Плотность мантии. Строение планеты: земное ядро, мантия, земная кора

Внутреннее строение

Общая структура планеты Земля

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя - твёрдая. Геологические слои Земли по глубине от поверхности:

Внутренняя теплота планеты, скорее всего, обеспечивается радиоактивным распадом изотопов калия-40, урана-238 и тория-232. У всех трёх элементов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 7 000 К, а давление может достигать 360 ГПа (3,6 млн. атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов.

Земная кора

Земная кора - это верхняя часть твёрдой земли. От мантии отделена границей с резким повышением скоростей сейсмических волн - границей Мохоровичича. Бывает два типа коры - континентальная и океаническая. Толщина коры колеблется от 6 км под океаном, до 30-50 км на континентах. В строении континентальной коры выделяют три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая кора сложена преимущественно породами основного состава, плюс осадочный чехол. Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга. Кинематику этих движений описывает тектоника плит.

Мантия Земли

Глубина км Слой Плотность г/см³

0-60 Литосфера (местами варьируется от 5 до 200 км)

0-35 Кора (местами варьируется от 5 до 70 км) 2,2-2,9

35-2890 Мантия 3,4-5,6

100-700 Астеносфера

2890-5100 Внешнее ядро 9,9-12,2

5100-6378 Внутреннее ядро 12,8-13,1

Мантия Земли

Мантия - это силикатная оболочка Земли, сложенная преимущественно перидотитами - породами, состоящими из силикатов магния, железа, кальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору.

Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5-70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км. Мантия расположена в огромном диапазоне глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру. Наиболее значительное превращение происходит на глубине 660 километров. Термодинамика этого фазового перехода такова, что мантийное вещество ниже этой границы не может проникнуть через неё, и наоборот. Выше границы 660 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времён формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору.

Теплоперенос в мантии происходит путём медленной конвекции, посредством пластической деформации минералов. Скорости движения вещества при мантийной конвекции составляют порядка нескольких сантиметров в год. Эта конвекция приводит в движение литосферные плиты. Конвекция в верхней мантии происходит раздельно. Существуют модели, которые предполагают ещё более сложную структуру конвекции.

В мантии находится большая часть вещества Земли. Мантия есть и на других планетах. Земная мантия находится в диапазоне от 30 до 2 900 км.

В ее пределах по сейсмическим данным выделяются: верхняя мантия слой В глубиной до 400 км и С до 800-1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия слой D до глубины 2700 с переходным слоем D1 от 2700 до 2900 км.

Границей между корой и мантией служит граница Мохоровичича или, сокращенно, Мохо. На ней происходит резкое увеличение сейсмических скоростей - от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км.

Строение Земли по представления различных исследователей

Отличие состава земной коры и мантии - следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и легкую часть - кору и плотную и тугоплавкую мантию.

Источники информации о мантии

Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.

Мантию изучают по следующим данным:

  • Геофизические данные. В первую очередь данные о скоростях сейсмических волн, электропроводности и силе тяжести.
  • Мантийные расплавы - базальты , коматииты , кимберлиты , лампроиты , карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии. Состав расплава является следствием состава плавившихся пород, межанизма плавления и физико-химических параметров процесса плавления. В целом, реконструкция источника по расплаву - сложная задача.
  • Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами - кимберлитами, щелочными базальтами и др. Это ксенолиты , ксенокристы и алмазы . Алмазы занимают среди источников информации о мантии особое место. Именно в алмазах установлены самые глубинные минералы, которые, возможно, происходят даже из нижней мантии. В таком случае эти алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.
  • Мантийные породы в составе земной коры. Такие комплексы в наибольшей степени соответствуют мантии, но и отличаются от неё. Самое главное различие - в самом факте их нахождения в составе земной коры, из чего следует, что они образовались в результате не совсем обычных процессов и, возможно, не отражают типичную мантию. Они встречаются в следующих геодинамических обстановках:
  1. Альпинотипные гипербазиты - части мантии, внедренные в земную кору в результате горообразования. Наиболее распространены в Альпах , от которых и произошло название.
  2. Офиолитовые гипербазиты - передотиты в составе офиолитовых комлексов - частей древней океанической коры .
  3. Абиссальные перидотиты - выступы мантийных пород на дне океанов или рифтов .

Эти комплексы имеют то преимущество, что в них можно наблюдать геологические соотношения между различными породами.

Недавно было объявлено, что японские исследователи планируют предпринять попытку пробурить океаническую кору до мантии. Для этого построен кораблю Тикю . Начало бурения планируется на 2007 год.

Основной недостаток полученной из этих фрагментов информации - невозможность установления геологических соотношений между различными типами пород. Это кусочки паззла. Как сказал классик, «определение состава мантии по ксенолитам напоминает попытки определения геологического строения гор по галькам, которые из них вынесла речка».

Состав мантии

Мантия сложена главным образом ультаосновными породами: перидотитами , (лерцолитами , гарцбургитами , верлитами , пироксенитами), дунитами и в меньшей степени основными породами - эклогитами .

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.

Содержание основных элементов в мантии Земли в массовых процентах
Элемент Концентрация Оксид Концентрация
44.8
21.5 SiO 2 46
22.8 MgO 37.8
5.8 FeO 7.5
2.2 Al 2 O 3 4.2
2.3 CaO 3.2
0.3 Na 2 O 0.4
0.03 K 2 O 0.04
Сумма 99.7 Сумма 99.1

Строение мантии

Процессы, идущие в мантии, оказывают самое непосредственное влияние на земную кору и поверхность земли, являются причиной движения континентов, вулканизма, землетрясений, горообразования и формирования рудных месторождений. Всё больше свидетельств того, что на саму мантию активно влияет металлическое ядро планеты.

Конвекция и плюмы

Список литературы

  • Пущаровский Д.Ю., Пущаровский Ю.М. Состав и строение мантии Земли // Соросовский Образовательный Журнал, 1998, No 11, с. 111–119 .
  • Ковтун А.А. Электропроводность Земли // Соросовский Образовательный Журнал, 1997, No 10, с. 111–117

Источник : Короновский Н.В., Якушова А.Ф. "Основы геологии", М., 1991

Ссылки

  • Images of the Earth"s Crust & Upper Mantle // International Geological Correlation Programme (IGCP), Project 474
Атмосфера
Биосфера

Мантия Земли, оболочка «твердой» Земли, расположенная между земной корой и ядром Земли. Занимает 83% Земли (без атмосферы) по объему и 67% по массе. От земной коры ее отделяет поверхность Мохоровичича, на которой скорость продольных сейсмических волн при переходе из коры в Мантию Земли возрастает скачком с 6,7–7,6 до 7,9–8,2 км/сек; от ядра Земли мантию отделяет поверхность (на глубине около 2900 км), на которой скорость сейсмических волн падает с 13,6 до 8,1 км/сек. Мантия Земли делится на нижнюю и верхнюю мантию. Последняя, в свою очередь, делится (сверху вниз) на субстрат, слой Гутенберга (слой пониженных скоростей ) и слой Голицына (иногда называется средней мантией). У подошвы мантии Земли выделяется слой толщиной менее 100 км, в котором скорости сейсмических волн не растут с глубиной или даже слегка понижаются.

Предполагается, что мантия Земли слагается теми химическими элементами, которые во время образования Земли находились в твердом состоянии или входили в состав твердых химических соединений. Из этих элементов преобладают: О, Si, Mg, Fe. Согласно современным представлениям, состав мантии Земли считается близким к составу каменных метеоритов. Из каменных метеоритов наиболее близкий к мантии Земли состав имеют хондриты. Предполагают, что непосредственными образцами вещества мантии являются обломки пород среди базальтовой лавы, вынесенные на поверхность Земли; их находят также вместе с алмазами в трубках взрыва. Считают также, что обломки пород, поднятые драгой со дна рифтов Срединно-океанических хребтов, представляют собой вещество мантии.

Мантия Земли

Образцы самой верхней части мантии Земли состоят преимущественно из пород ультраосновного (перидотит и пироксенит) и основного (эклогит) состава. Обычно считается, что мантия Земли почти полностью сложена оливином ((Mg, Fe) 2 SiO 4), в котором сильно преобладает магниевая компонента (форстерит), но с глубиной, быть может, возрастает доля железной составной части (фаялита). Австралийский петрограф Рингвуд предполагает, что мантия Земли сложена гипотетической породой, которую он назвал пиролитом и которая по составу соответствует смеси из 3 частей периодита и 1 части базальта. Теоретические расчеты показывают, что в нижней мантии Земли минералы должны распадаться на окислы. К началу 70-х годов 20 века появились также данные, указывающие на наличие в мантии Земли горизонтальных неоднородностей.

Характерной чертой мантии Земли являются, по-видимому, фазовые переходы. Экспериментально установлено, что в оливине под большим давлением изменяется структура кристаллической решетки, появляется более плотная упаковка атомов, так что объем минерала заметно уменьшается. В кварце такой фазовый переход наблюдается дважды по мере роста давления; самая плотная модификация на 65°C плотнее обычного кварца. Такие фазовые переходы считаются главной причиной того, что в слое Голицына скорости сейсмических волн очень быстро возрастают с глубиной.

Несомненно, что выделилась из мантии Земли; процесс дифференциации мантии Земли продолжается и сейчас. Есть предположение, что и земное ядро разрастается за счет мантии Земли. Процессы в земной коре и мантии Земли тесно связаны; в частности, энергия для тектонических движений земной коры, по-видимому, поступает из мантии Земли.

Силикатная оболочка Земли, её мантия, расположена между подошвой земной коры и поверхностью земного ядра на глубинах около 2 900 км. Обычно по сейсмическим данным мантию делят на верхнюю (слой В), до глубины 400 км, переходный слой Голицына (слой С) в интервале глубин 400-1000 км и нижнюю мантию (слой D) с подошвой на глубине примерно 2 900 км. Под океанами в верхней мантии выделяется ещё и слой пониженных скоростей распространения сейсмических волн - волновод Гутенберга, обычно отождествляемый с астеносферой Земли, в которой мантийное вещество находится в частично расплавленном состоянии. Под континентами зона пониженных скоростей, как правило, не выделяется либо слабо выражена.

В состав верхней мантии обычно включаются и подкоровые части литосферных плит, в которых мантийное вещество охлаждено и полностью раскристаллизовано. Под океанами мощность литосферы меняется от нуля под рифтовыми зонами до 60-70 км под абиссальными котловинами океанов. Под континентами толщина литосферы может достигать 200-250 км.

Наши сведения о строении мантии и земного ядра, а также о состоянии вещества в этих геосферах получены в основном по сейсмологическим наблюдениям, путём интерпретации годографов сейсмических волн с учётом известных уравнений гидростатики, связывающих между собой градиенты плотности и значения скоростей распространения продольных и поперечных волн в среде. Методика эта была разработана известными геофизиками Г. Джефрисом, Б. Гутенбергом и особенно К. Булленом ещё в середине 40-х годов и затем существенно усовершенствована К. Булленом и другими сейсмологами. Построенные по этой методике распределения плотности в мантии для нескольких наиболее популярных моделей Земли в сопоставлении с данными ударного сжатия силикатов (модель НС-1) приведены на рис. 10.

Рисунок 10.
1 — модель Наймарка-Сорохтина (1977а); 2 — модель Буллена А1 (1966); 3 — модель Жаркова «Земля-2» (Жарков и др., 1971); 4 — пересчёт данных Панькова и Калинина (1975) на состав лерцолитов при адиабатическом распределении температуры.

Как видно из рисунка, плотность верхней мантии (слоя В) с глубиной увеличивается от 3,3-3,32 примерно до 3,63-3,70 г/см 3 на глубине около 400 км. Далее в переходном слое Голицына (слое С) градиент плотности резко возрастает и плотность повышается до 4,55-4,65 г/см 3 на глубине 1 000 км. Слой Голицына постепенно переходит в нижнюю мантию, плотность которой плавно (по линейному закону) возрастает до 5,53-5,66 г/см 3 на глубине её подошвы около 2 900 км.

Увеличение плотности мантии с глубиной объясняется уплотнением её вещества под влиянием все возрастающего давления вышележащих мантийных слоев, достигающего на подошве мантии значений 1,35-1,40 Мбар. Особенно заметное уплотнение силикатов мантийного вещества происходит в интервале глубин 400-1000 км. Как показал А. Рингвуд, именно на этих глубинах многие минералы испытывают полиморфные превращения. В частности, наиболее распространённый в мантии минерал оливин приобретает кристаллическую структуру шпинели, а пироксены - ильменитовую, а затем и плотнейшую перовскитовую структуру. На ещё больших глубинах большинство силикатов, за исключением, вероятно, только энстатита, распадаются на простые окислы с плотнейшей упаковкой атомов в соответствующих им кристаллитах.

Факты движения литосферных плит и дрейфа континентов убедительно свидетельствуют о существовании в мантии интенсивных конвективных движений, неоднократно перемешивавших за время жизни Земли все вещество этой геосферы. Отсюда можно сделать вывод, что составы и верхней и нижней мантии в среднем одинаковые. Однако состав верхней мантии уверенно определяется по находкам ультраосновных пород океанической коры и составам офиолитовых комплексов. Изучая офиолиты складчатых поясов и базальты океанических островов, А. Рингвуд ещё в 1962 г. предложил гипотетический состав верхней мантии, названный им пиролитом, получаемый при смешении трёх частей альпинотипного перидотита - габсбургита с одной частью гавайского базальта. Пиролит Рингвуда близок по составу к океаническим лерцолитам, подробно изученным Л.В. Дмитриевым (1969, 1973). Но в противоположность пиролиту океанический лерцолит является не гипотетической смесью пород, а реальной мантийной породой, поднявшейся из мантии в рифтовых зонах Земли и обнажающейся в трансформных разломах вблизи от этих зон. К тому же Л. В. Дмитриев показал комплиментарность океанических базальтов и реститовых (остаточных после выплавки базальтов) гарцбургитов по отношению к океаническим лерцолитам, доказав тем самым первичность лерцолитов, из которых, следовательно, выплавляются толеитовые базальты срединно-океанических хребтов, а в остатке сохраняется реститовый гарцбургит. Таким образом, ближе всего составу верхней мантии, а следовательно, и всей мантии соответствует описанный Л. В. Дмитриевым океанический лерцолит, состав которого приведён в табл. 1.

Таблица 1. Состав современной Земли и первичного земного вещества
По А. Б. Ронову и А. А. Ярошевскому (1976); (2) Наша модель с использованием данных Л. В. Дмитриева (1973) и А. Рингвуда (Ringwood, 1966); (3) H. Urey, H. Craig (1953); (4) Флоренский К. П., Базилевский Ф. Т. и др., 1981.
Окислы Состав континентальной коры (1) Модельный состав мантии Земли (2) Модельный состав ядра Земли Состав первичного вещества Земли (расчёт) Средний состав хондритов (3) Средний состав углистых хондритов (4)
SiO 2 59,3 45,5 30,78 38,04 33,0
TiO 2 0,7 0,6 0,41 0,11 0,11
Al 2 O 3 15,0 3,67 2,52 2,50 2,53
Fe 2 O 3 2,4 4,15
FeO 5,6 4,37 49,34 22,76 12,45 22,0
MnO 0,1 0,13 0,09 0,25 0,24
MgO 4,9 38,35 25,77 23,84 23,0
CaO 7,2 2,28 1,56 1,95 2,32
Na 2 O 2,5 0,43 0,3 0,95 0,72
K 2 O 2,1 0,012 0,016 0,17
Cr 2 O 3 0,41 0,28 0,36 0,49
P 2 O 5 0,2 0,38
NiO 0,1 0,07
FeS 6,69 2,17 5,76 13,6
Fe 43,41 13,1 11,76
Ni 0,56 0,18 1,34
Сумма 100,0 100,0 100,0 100,0 99,48 98,39

Кроме того, признание существования в мантии конвективных движений позволяет определить и её температурный режим, поскольку при конвекции распределение температуры в мантии должно быть близким к адиабатическому, т.е. к такому, при котором между смежными объёмами мантии не происходит теплообмена, связанного с теплопроводностью вещества. В этом случае теплопотери мантии происходят только в её верхнем слое - через литосферу Земли, распределение температуры в которой уже резко отличается от адиабатического. Но адиабатическое распределение температуры легко рассчитывается по параметрам мантийного вещества.

Для проверки гипотезы о едином составе верхней и нижней мантии были проведены расчёты плотности океанического лерцолита, поднятого в трансформном разломе хребта Карлсберг в Индийском океане, по методике ударного сжатия силикатов до давлений около 1,5 Мбар. Для такого «эксперимента» вовсе не обязательно сжимать сам образец породы до таких высоких давлений, достаточно знать его химический состав и результаты ранее проведённых опытов по ударному сжатию отдельных породообразующих окислов. Результаты такого расчёта, выполненного для адиабатического распределения температуры в мантии, были сопоставлены с известными распределениями плотности в этой же геосфере, но полученными по сейсмологическим данным (см. рис. 10). Как видно из приведённого сравнения, распределение плотности океанического лерцолита при высоких давлениях и адиабатической температуре неплохо аппроксимирует реальное распределение плотности в мантии, полученное по совершенно независимым данным. Это свидетельствует в пользу реальности сделанных предположений о лерцолитовом составе всей мантии (верхней и нижней) и об адиабатическом распределении температуры в этой геосфере. Зная распределение плотности вещества в мантии, можно подсчитать и её массу: она оказывается равной (4,03-4,04)×10 2 г, что составляет 67,5% от общей массы Земли.

На подошве нижней мантии выделяется ещё один мантийный слой толщиной около 200 км, обычно обозначаемый символом D’’, в котором уменьшаются градиенты скоростей распространения сейсмических волн и возрастает затухание поперечных волн. Более того, на основании анализа динамических особенностей распространения волн, отражённых от поверхности земного ядра, И.С. Берзон и её коллегам (1968, 1972) удалось выделить тонкий переходный слой между мантией и ядром толщиной около 20 км, названный нами слоем Берзон, в котором скорость поперечных волн в нижней половине убывает с глубиной от 7,3 км/с практически до нуля. Снижение же скорости поперечных волн можно объяснить лишь уменьшением значения модуля жёсткости, а следовательно, и уменьшением коэффициента эффективной вязкости вещества в этом слое.

Сама граница перехода от мантии к земному ядру при этом остаётся достаточно резкой. Судя по интенсивности и спектру отражённых от поверхности ядра сейсмических волн, толщина такого пограничного слоя не превышает 1 км.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Д.Ю. Пущаровский, Ю.М. Пущаровский (МГУ им. М.В. Ломоносова)

Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры - тонкой приповерхностной пленке земного шара. Вместе с тем новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.

Сейсмическая модель строения Земли

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра.

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо, М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Рис. 1. Схема глубинного строения Земли

Внутреннее ядро, имеющее радиус 1225 км, твердое и обладает большой плотностью - 12,5 г/см3. Внешнее ядро жидкое, его плотность 10 г/см3. На границе ядра и мантии отмечается резкий скачок не только в скорости продольных волн, но и в плотности. В мантии она снижается до 5,5 г/см3. Слой D", находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре значительно превышают температуры мантии. Местами данный слой порождает огромные, направленные к поверхности Земли сквозь мантийные тепломассопотоки, называемые плюмами. Они могут проявляться на планете в виде крупных вулканических областей, как, например, на Гавайских островах, в Исландии и других регионах.

Верхняя граница слоя D" неопределенна; ее уровень от поверхности ядра может варьировать от 200 до 500 км и более. Таким образом, можно заключить, что данный слой отражает неравномерное и разноинтенсивное поступление энергии ядра в область мантии.

Границей нижней и верхней мантии в рассматриваемой схеме служит сейсмический раздел, лежащий на глубине 670 км. Он имеет глобальное распространение и обосновывается скачком сейсмических скоростей в сторону их увеличения, а также возрастанием плотности вещества нижней мантии. Этот раздел является также и границей изменений минерального состава пород в мантии.

Таким образом, нижняя мантия, заключенная между глубинами 670 и 2900 км, простирается по радиусу Земли на 2230 км. Верхняя мантия имеет хорошо фиксирующийся внутренний сейсмический раздел, проходящий на глубине 410 км. При переходе этой границы сверху вниз сейсмические скорости резко возрастают. Здесь, как и на нижней границе верхней мантии, происходят существенные минеральные преобразования.

Верхнюю часть верхней мантии и земную кору слитно выделяют как литосферу, являющуюся верхней твердой оболочкой Земли, в противоположность гидро- и атмосфере. Благодаря теории тектоники литосферных плит термин "литосфера" получил широчайшее распространение. Теория предполагает движение плит по астеносфере - размягченном, частично, возможно, жидком глубинном слое пониженной вязкости. Однако сейсмология не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных слоев, расположенных по вертикали, а также прерывистость их по горизонтали. Особенно определенно их чередование фиксируется в пределах континентов, где глубина залегания астеносферных слоев (линз) варьирует от 100 км до многих сотен.

Под океанскими абиссальными впадинами астеносферный слой лежит на глубинах 70-80 км и менее. Соответственно нижняя граница литосферы фактически является неопределенной, а это создает большие трудности для теории кинематики литосферных плит, что и отмечается многими исследователями.

Таковы основы представлений о строении Земли, сложившиеся к настоящему времени. Далее обратимся к новейшим данным в отношении глубинных сейсмических рубежей, представляющих важнейшую информацию о внутреннем строении планеты.

Современные данные о сейсмических границах

Тем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км . Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.

Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.

Ниже рассмотрим, каким образом геофизические рубежи соотносятся с полученными в последнее время результатами структурных изменений минералов под влиянием высоких давлений и температур, значения которых соответствуют условиям земных глубин.

Состав верхней мантии

Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы - оливин, пироксены и гранат в отношении 4: 2: 1), пиклогитовая (главные минералы - пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al2SiO5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии, простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO2) ~ 2, оказываясь ближе к оливину (Mg, Fe)2SiO4, чем к пироксену (Mg, Fe)SiO3, а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

Все предложенные модели весьма обобщенные и гипотетичные. Пиролитовая модель верхней мантии с преобладанием оливина предполагает ее значительно большую близость по химическому составу со всей более глубокой мантией. Наоборот, пиклогитовая модель предполагает существование определенного химического контраста между верхней и остальной мантиями. Более частная эклогитовая модель допускает присутствие в верхней мантии отдельных эклогитовых линз и блоков.

Большой интерес представляет попытка согласовать структурно-минералогические и геофизические данные, относящиеся к верхней мантии. Уже около 20 лет допускается, что увеличение скоростей сейсмических волн на глубине ~410 км преимущественно связано со структурной перестройкой оливина a-(Mg, Fe)2SiO4 в вадслеит b-(Mg, Fe)2SiO4, сопровождающейся образованием более плотной фазы с большими значениями коэффициентов упругости. Согласно геофизическим данным, на таких глубинах в недрах Земли скорости сейсмических волн возрастают на 3-5%, тогда как структурная перестройка оливина в вадслеит (в соответствии со значениями их модулей упругости) должна сопровождаться увеличением скоростей сейсмических волн примерно на 13%. Вместе с тем результаты экспериментальных исследований оливина и смеси оливин-пироксен при высоких температурах и давлениях выявили полное совпадение рассчитанного и экспериментального увеличения скоростей сейсмических волн в интервале глубин 200-400 км. Поскольку оливин обладает примерно такой же упругостью, как и высокоплотные моноклинные пироксены, эти данные должны были бы указывать на отсутствие в составе нижележащей зоны граната, обладающего высокой упругостью, присутствие которого в мантии неизбежно вызвало бы более значительное увеличение скоростей сейсмических волн. Однако эти представления о безгранатовой мантии вступали в противоречие с петрологическими моделями ее состава.

Таблица 1. Минеральный состав пиролита (по Л. Лиу, 1979)


Так появилась идея о том, что скачок в скоростях сейсмических волн на глубине 410 км связан в основном со структурной перестройкой пироксен-гранат внутри обогащенных Na частей верхней мантии. Такая модель предполагает почти полное отсутствие конвекции в верхней мантии, что противоречит современным геодинамическим представлениям. Преодоление этих противоречий можно связать с недавно предложенной более полной моделью верхней мантии , допускающей вхождение атомов железа и водорода в структуру вадслеита.

Рис. 2. Изменение объемных про- порций минералов пиролита при возрастании давлений (глуби- ны), по М. Акаоги (1997). Условные обозначения минералов: Ol - оливин, Gar - гранат, Cpx - моноклинные пироксены, Opx - ромбические пироксены, MS - "модифицирован- ная шпинель", или вадслеит (b-(Mg, Fe)2SiO4), Sp - шпинель, Mj - меджорит Mg3(Fe, Al, Si)2(SiO4)3, Mw - магнезиовюстит (Mg, Fe)O, Mg-Pv -Mg-перовскит, Cа-Pv-Cа- перовс- кит, X - предпо- лагаемые Al-содер- жащие фазы со структурами типа ильменита, Cа-феррита и/или голландита

В то время как полиморфный переход оливина в вадслеит не сопровождается изменением химического состава, в присутствии граната возникает реакция, приводящая к образованию вадслеита, обогащенного Fe по сравнению с исходным оливином. Более того, вадслеит может содержать значительно больше по сравнению с оливином атомов водорода. Участие атомов Fe и Н в структуре вадслеита приводит к уменьшению ее жесткости и соответственно уменьшению скоростей распространения сейсмических волн, проходящих сквозь этот минерал.

Кроме того, образование обогащенного Fe вадслеита предполагает вовлечение в соответствующую реакцию большего количества оливина, что должно сопровождаться изменением химического состава пород вблизи раздела 410. Идеи об этих трансформациях подтверждаются современными глобальносейсмическими данными. В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации (табл. 1), то ее преобразование вплоть до глубин ~800 км исследовано достаточно детально и в обобщенном виде представлено на рис. 2. При этом глобальной сейсмической границе на глубине 520 км соответствует перестройка вадслеита b-(Mg, Fe)2SiO4 в рингвудит - g-модификацию (Mg, Fe)2SiO4 со структурой шпинели. Трансформация пироксен (Mg, Fe)SiO3 гранат Mg3(Fe, Al, Si)2Si3O12 осуществляется в верхней мантии в более широком интервале глубин. Таким образом, вся относительно гомогенная оболочка в интервале 400-600 км верхней мантии в основном содержит фазы со структурными типами граната и шпинели.

Все предложенные в настоящее время модели состава мантийных пород допускают содержание в них Al2O3 в количестве ~4 вес. %, которое также влияет на специфику структурных превращений. При этом отмечается, что в отдельных областях неоднородной по составу верхней мантии Al может быть сосредоточен в таких минералах, как корунд Al2O3 или кианит Al2SiO5 , который при давлениях и температурах, cответствующих глубинам ~450 км, трансформируется в корунд и стишовит - модификацию SiO2, структура которой содержит каркас из SiO6 октаэдров. Оба этих минерала сохраняются не только в низах верхней мантии, но и глубже.

Важнейший компонент химического состава зоны 400-670 км - вода, содержание которой, по некоторым оценкам, составляет ~0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами . Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м.

Состав мантии ниже границы 670 км

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км. В этих экспериментах исследуемый кристалл помещается между двумя алмазными пирамидами (наковальнями) , при сжатии которых создаются давления, соизмеримые с давлениями внутри мантии и земного ядра. Тем не менее в отношении этой части мантии, на долю которой приходится более половины всех недр Земли, по-прежнему остается много вопросов. В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя в традиционном понимании) мантия в основном состоит из перовскитоподобной фазы (Mg,Fe)SiO3, на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (Mg, Fe)O (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор (Mg, Fe)SiO3-Al2O3), кубического перовскита (CaSiO3) и Са-феррита (NaAlSiO4). Образование этих соединений связано с различными структурными трансформациями минералов верхней мантии. При этом одна из основных минеральных фаз относительно гомогенной оболочки, лежащей в интервале глубин 410-670 км,

Похожие рефераты:

Сферическое строение планеты по Э. Вихерту и Э. Зюссу. Современные программы изучения недр с помощью бурения сверхглубоких скважин и сейсмических волн. Особенности земной коры, литосферы, астеносферы, мантии и земного ядра, гравитационная дифференциация.

Сущность волнового и геологического представления геологического разреза. Особенности использования нейронных сетей для прогноза русловых песчаников. Понятие картирования сейсмофаций. Анализ импеданса и пористости с учетом глин в покрышке и в подошве.

Химический состав и физико-химические особенности магмы. Общее понятие родоначальной магмы, ее главные признаки и характеристики. Представления, гипотезы и доказательства о существовании базальтовой, гранитной, ультраосновной и андезитовой магмы.

Понятие тектоносферы и ее отличие от более глубоких оболочек Земли. Строение и состав земной коры, особенности гранитогнейсового слоя. Строение и состав верхней мантии, понятие сейсмического волновода. Закономерности в строении и развитии тектоносферы.

3D сейсморазведка впервые предоставила геологам, геофизикам и промысловикам возможность получать информацию о строении среды в межскважинном пространстве, формируемую по результатам динамического анализа сейсмического волнового поля.

РЕФЕРАТ на тему: “Теория происхождения Земли”. 1.Содержание: 2.Введение 3.Образование мантии и ядра Земли 4. Дифференциация мантии и образование коры, гидросферы и атмосферы