Сообщение на тему новые достижения биологии. Достижения современной биологии. Значение биологии для медицины, сельского хозяйства и других отраслей народного хозяйства


Достижения биологии в современных вариантах систематики жизни
На основании последних научных достижений современной биологической науки дано следующее определение жизни: «Жизнь – это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров – белков и нуклеиновых кислот» (И. И. Мечников).
Достижения биологии последнего времени привели к возникновению принципиально новых направлений в науке. Раскрытие молекулярного строения структурных единиц наследственности (генов) послужило основой для создания генной инженерии. С помощью ее методов создают организмы с новыми, в том числе и не встречающимися в природе, комбинациями наследственных признаков и свойств. Она открывает возможности выведения новых сортов культурных растений и высокопродуктивных пород животных, создания эффективных лекарственных препаратов и т.д.
Живая природа устроила себя гениально просто и мудро. У нее есть единственная самовоспроизводящая молекула ДНК, на которой записана программа жизни, а конкретнее, весь процесс синтеза, структура и функция белков как основных элементов жизни. Кроме сохранения программы жизни молекула ДНК выполняет еще одну важнейшую функцию – ее самовоспроизведение, копирование создают преемственность между поколениями, непрерывность нити жизни. Единожды возникнув, жизнь самовоспроизводится в огромном разнообразии, которое обеспечивает ее устойчивость, приспособленность к разнообразным условиям среды и эволюцию.
Современные биотехнологии
Современная биология – область стремительных и фантастических преобразований в биотехнологии.
Биотехнологии основаны на использовании живых организмов и биологических процессов в промышленном производстве. На их базе освоено массовое производство искусственных белков, питательных и многих других веществ, по многим свойствам превосходящих продукты естественного происхождения. Успешно развивается микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т.п. С применением генных технологий и естественных биоорганических материалов синтезируются биологически активные вещества - гормональные препараты и соединения, стимулирующие иммунитет.
Современная биотехнология позволяет превратить отходы древесины, соломы и другое растительное сырье в ценные питательные белки. Она включает процесс гидролизации промежуточного продукта - целлюлозы - и нейтрализацию образующейся глюкозы с введением солей. Полученный раствор глюкозы представляет собой питательный субстрат микроорганизмов – дрожжевых грибков. В результате жизнедеятельности микроорганизмов образуется светло-коричневый порошок – высококачественный пищевой продукт, содержащий около 50% белка-сырца и различные витамины. Питательной средой для дрожжевых грибков могут служить и такие содержащие сахар растворы, как паточная барда и сульфитный щелок, образующийся при производстве целлюлозы.
Некоторые виды грибков превращают нефть, мазут и природный газ в пищевую биомассу, богатую белками. Так, из 100 т неочищенного мазута можно получить 10 т дрожжевой биомассы, содержащей 5 т чистого белка и 90 т дизельного топлива. Столько же дрожжей производится из 50 т сухой древесины или 30 тыс. м3 природного газа. Для производства данного количества белка потребовалось бы стадо коров из 10 000 голов, а для их содержания нужны огромные площади пахотных земель. Промышленное производство белков полностью автоматизировано, и дрожжевые культуры растут в тысячи раз быстрее, чем крупный рогатый скот. Одна тонна пищевых дрожжей позволяет получить около 800 кг свинины, 1,5-2,5 т птицы или 15-30 тыс. яиц и сэкономить при этом до 5 т зерна.
Практическое применение достижений современной биологии уже в настоящее время позволяет получать промышленным путем значительные количества биологически активных веществ.
Биотехнология, по-видимому, уже в ближайшие десятилетия займет лидирующее положение и, возможно, определит лицо цивилизации XXI века.
Генные технологии
Генетика – важнейшая область современной биологии.
На основе генной инженерии родилась современная биотехнология. В мире сейчас колоссальное количество фирм, занимающихся бизнесом в этой области. Они делают все: от лекарств, антител, гормонов, пищевых белков до технических вещей – сверхчувствительных датчиков (биосенсоров), компьютерных микросхем, хитиновых диффузоров для хороших акустических систем. Генно-инженерная продукция завоевывает мир, она безопасна в экологическом отношении.
На начальной стадии развития генных технологий был получен ряд биологически активных соединений - инсулин, интерферон и др. Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства.
Генные технологии основаны на методах молекулярной биологии и генетики, связанных с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Основная операция генной технологии заключается в извлечении из клеток организма гена, кодирующего нужный продукт, или группы генов и соединение их с молекулами ДНК, способными размножаться в клетках другого организма.
ДНК, хранящаяся и работающая в клеточном ядре, воспроизводит не только саму себя. В нужный момент определенные участки ДНК – гены – воспроизводят свои копии в виде химически подобного полимера – РНК, рибонуклеиновой кислоты, которые в свою очередь служат матрицами для производства множества необходимых организму белков. Именно белки определяют все признаки живых организмов. Основная цепь событий на молекулярном уровне:
ДНК -> РНК -> белок
В этой строчке заключена так называемая центральная догма молекулярной биологии.
Генные технологии привели к разработке современных методов анализа генов и геномов, а они, в свою очередь, - к синтезу, т.е. к конструированию новых, генетически модифицированных микроорганизмов. К настоящему времени установлены нуклеотидные последовательности разных микроорганизмов, включая промышленные штаммы, и те, которые нужны для исследования принципов организации геномов и для понимания механизмов эволюции микробов. Промышленные микробиологи, в свою очередь, убеждены, что знание нуклеотидных последовательностей геномов промышленных штаммов позволит «программировать» их на то, чтобы они приносили большой доход.
Клонирование эукариотных (ядерных) генов в микробах и есть тот принципиальный метод, который привел к бурному развитию микробиологии. Фрагменты геномов животных и растений для их анализа клонируют именно в микроорганизмах. Для этого в качестве молекулярных векторов, переносчиков генов, используют искусственно созданные плазмиды, а также множество других молекулярных образований для выделения и клонирования.
С помощью молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно определять, скажем, заражена ли донорская кровь вирусом СПИДа. А генные технологии для идентификации некоторых микробов позволяют следить за их распространением, например, внутри больницы или при эпидемиях.
Генные технологии производства вакцин развиваются в двух основных направлениях. Первое - улучшение уже существующих вакцин и создание комбинированной вакцины, т.е. состоящей из нескольких вакцин. Второе направление - получение вакцин против болезней: СПИДа, малярии, язвенной болезни желудка и др.
За последние годы генные технологии значительно улучшили эффективность традиционных штаммов-продуцентов. Например, у грибного штамма-продуцента антибиотика цефалоспорина увеличили число генов, кодирующих экспандазу, активность, которой задает скорость синтеза цефалоспорина. В итоге выработка антибиотика возросла на 15-40%.
Проводится целенаправленная работа по генетической модификации свойств микробов, используемых в производстве хлеба, сыроварении, молочной промышленности, пивоварении и виноделии, чтобы увеличить устойчивость производственных штаммов, повысить их конкурентоспособность по отношению к вредным бактериям и улучшить качество конечного продукта.
Генетически модифицированные микробы приносят пользу в борьбе с вредными вирусами и микробами и насекомыми. Например:
- устойчивость растений к гербицидам, что важно для борьбы с сорняками, засоряющими поля и снижающими урожай культивируемых растений. Получены и используются гербицидоустойчивые сорта хлопчатника, кукурузы, рапса, сои, сахарной свеклы, пшеницы и других растений.
- устойчивость растений к насекомым-вредителям. Разработка белка дельта-эндотоксину, продуцируемого разными штаммами бактерии Bacillus turingensis. Этот белок токсичен для многих видов насекомых и безопасен для млекопитающих, в том числе для человека.
- устойчивость растений к вирусным заболеваниям. Для этого в геном растительной клетки вводятся гены, блокирующие размножения вирусных частиц в растениях, например интерферон, нуклеазы. Получены трансгенные растения табака, томатов и люцерны с геном бета-интерферона.
Кроме генов в клетках живых организмов, в природе существуют также независимые гены. Они называются вирусами, если могут вызвать инфекцию. Оказалось, что вирус – это не что иное, как упакованный в белковую оболочку генетический материал. Оболочка – чисто механическое приспособление, как бы шприц, для того, чтобы упаковать, а затем впрыснуть гены, и только гены, в клетку-хозяина и отвалиться. Затем вирусные гены в клетке начинают репродуцировать на себе свои РНК и свои белки. Все это переполняет клетку, она лопается, гибнет, а вирус в тысячах копий освобождается и заражает другие клетки.
Болезнь, а иногда даже смерть вызывают чужеродные, вирусные белки. Если вирус «хороший», человек не умирает, но может болеть всю жизнь. Классический пример – герпес, вирус которого присутствует в организме 90% людей. Это самый приспособленный вирус, обычно заражающий человека в детском возрасте и живущий в нем постоянно.
Таким образом, вирусы – это, в сущности, изобретенное эволюцией биологическое оружие: шприц, наполненный генетическим материалом.
Теперь пример уже из современной биотехнологии, пример операции с зародышевыми клетками высших животных ради благородных целей. Человечество испытывает трудности с интерфероном – важным белком, обладающим противораковой и противовирусной активностью. Интерферон вырабатывается животным организмом, в том числе и человеческим. Чужой, не человеческий, интерферон для лечения людей брать нельзя, он отторгается организмом или малоэффективен. Человек же вырабатывает слишком мало интерферона для его выделения с фармакологическими целями. Поэтому было сделано следующее. Ген человеческого интерферона был введен в бактерию, которая затем размножалась и в больших количествах нарабатывала человеческий интерферон в соответствии с сидящим в ней человеческим геном. Сейчас эта, уже стандартная техника применяется во всем мире. Точно так же, и уже довольно давно, производится генно-инженерный инсулин. С бактериями, однако, возникает много сложностей при очистке нужного белка от бактериальных примесей. Поэтому начинают от них отказываться, разрабатывая методы введения нужных генов в высшие организмы. Это труднее, но дает колоссальные преимущества. Сейчас, в частности, уже широко распространено молочное производство нужных белков с использованием свиней и коз. Принцип здесь, очень коротко и упрощенно, таков. Из животного извлекают яйцеклетки и вставляют в их генетический аппарат, под контроль генов белков молока животного, чужеродные гены, определяющие выработку нужных белков: интерферона, или необходимых человеку антител, или специальных пищевых белков. Потом яйцеклетки оплодотворяют и возвращают в организм. Часть потомства начинает давать молоко, содержащее необходимый белок, а из молока выделить его уже достаточно просто. Получается значительно дешевле, безопаснее и чище.
Таким же путем были выведены коровы, дающие «женское» молоко (коровье молоко с необходимыми человеческими белками), пригодное для искусственного вскармливания человеческих младенцев. А это сейчас довольно серьезная проблема.
В целом можно сказать, что в практическом плане человечество достигло довольно опасного рубежа. Научились воздействовать на генетический аппарат, в том числе и высших организмов. Научились направленному, избирательному генному воздействию, продуцированию так называемых трансгенных организмов – организмов, несущих любые чужеродные гены. ДНК – это вещество, с которым можно манипулировать. В последние два-три десятилетия возникли методы, с помощью которых можно разрезать ДНК в нужных местах и склеивать с любым другим кусочком ДНК. Более того, могут вырезать и вставлять не только определенные готовые гены, но и рекомбинанты – комбинации разных, в том числе и искусственно созданных генов. Это направление получило название генной инженерии. Человек стал генным инженером. В его руках, в руках не столь уже совершенного в интеллектуальном отношении существа, появились безграничные, гигантские возможности - как у Господа Бога.
Современная цитология
Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, позволяют достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.
Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.
Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения. Злокачественные образования – это не что иное, как отклонения в нормальном процессе развития вследствие выхода из-под контроля управляющих развитием систем, в первую очередь генетических. Цитология является достаточно простым и высокоинформативным методом скрининговой диагностики различных проявлений папилломавируса. Это исследование проводится как у мужчин, так и у женщин.
Клонирование
Клонирование – это процесс, в ходе которого живое существо производится от единственной клетки, взятой от другого живого существа.
Клонирование обычно определяется, как производство клеток или организмов с теми же нуклеарными геномами, что и у другой клетки или организма. Соответственно, путём клонирования можно создать любой живой организм или его часть, идентичный уже существующему или и т.д.................

Те, кто следит за достижениями молекулярной биологии , должно быть, уже привыкли, что в этой молодой науке, вступившей всего лишь в третье десятилетие своего существования, крупные открытия совер-шаются часто, даже очень часто. Всего лишь 17 лет назад американец Джеймс Уотсон и англичанин Фрэнсис Крик предложили гипотезу о строении молекулы ДНК, которая, по их мнению, не разделявшемуся, впрочем, в то время большинством биологов, являлась хранителем генетической информации. Очень скоро, прямо-таки в фантастически сжатые сроки, мнение Уотсона и Крика о том, что ДНК действительно несет запись о всех генах организма, было доказано экспериментально. К началу шестидесятых годов стало ясно, что генетическая информация с молекул ДНК передается на похожие на них по своей структуре молекулы РНК. Последние соединяются с особыми структурами клетки — рибосомами, в которых и происходит синтез белка. Немногим ранее Г. Гамов (США), Ф. Крик и другие создали логически завершенную модель генетического кода. Самое важное заключалось в том, что было строго указано, для чего клетке нужна генетическая информация (синтез специфических белков, которые и определяют свойство жизни и возможность осуществления многообразных жизненных функций). Было показано и как отдельные элементы молекулы ДНК (по мысли Гамова, с которой все согласились, тройки нуклеотидов, расположенные вдоль цепи ДНК) кодируют строение синтезируемых в рибосомах белков.
Мало кто ожидал — даже среди весьма проницательных генетиков, — что уже в 1961 году Крик и его три помощника «расправятся» с задачей об общей природе генетического кода. Правда, путь к расшифровке состава отдельных троек, кодирующих аминокислоты, был открыт работой М. Ниренберга и Д. Маттеи, доложенной в Москве летом того же 2000 года. И уж совсем трудно было предполагать, что всего через два с половиной года американцы М. Ниренберг и Ф. Ледер предложат способ, позволяющий выяснить точное строение всех 64 кодовых слов генов. Уже через год генетики знали наследственный алфавит природы.

Кроме того, птичий сундук птиц выглядел очень близко. Мы знали поведение рой до сих пор от рыб или муравьев. Роботизированный балет особенно впечатляет, потому что актеры с размерами монет ставят свою хореографию на пол без точного плана программирования и только благодаря общению с их ближайшими соседями. Полный отчет с видео доступен.

Нейроморфные чипы моделируются на мозг человека и предназначены для обработки информации совершенно по-новому. Многие пациенты с диабетом полагаются на ежедневные инъекции инсулина. В будущем это должно измениться. Две исследовательские группы разработали пути для дифференциации стволовых клеток человека в бета-клетки, продуцирующие инсулин. Команда Дугласа Мелтона из Института стволовых клеток Гарварда в Кеймбридже, Массачусетс, имплантировала бета-клетки у мышей и сообщила, что их клетки успешно продуцировали там инсулин.

Но решение этих задач не увеличивало наших знаний о точном строении гена, точном строении молекул отдельных информационных и транспортных РНК. В 1964—1965 годах Холли в США и А. Баев в РФ расшифровали первые, самые маленькие из молекул, обслуживающих генетические таинства, — молекулы транспортных РНК. В 1967 году в лаборатории А. Корнберга в США после многолетних безуспешных попыток удалось синтезировать работоспособную молекулу ДНК фага 0X174. Через год Г. Корана (индиец, переехавший в США) в хитроумном эксперименте сумел синтезировать первый ген для транспортной РНК дрожжей. И вот сейчас, всего через год, выделен чистый ген из живых молекул ДНК !
Как ни парадоксально, этот грандиозный по своему замыслу, выполнению и последствиям для науки эксперимент не был само-целью. Беквит, широко известный специалист в области молекулярных основ реализации генетической информации, в предисловии указывает на главную цель, которую он и его коллеги преследовали, начиная работу. Им было важно найти ключи к разрешению давнего спора о том, когда происходит регуляция генной активности. Имелись две прСогласно первой, сам тен (то есть участок ДНК со строго определенной последовательностью нуклеотидов) может быть ареной регуляции. В таком случае с активированных генов будет списываться информационная РНК, а с репрессированных генов такого списывания происходить не будет.

Однако до тех пор, пока эта форма терапии не будет использована у людей, еще предстоит пройти долгий путь. Это подтвердили австралийские исследователи из Университета Вуллонгонга. Мы объясняем, как это произошло с ратификацией. С помощью оптигенных методов они смогли обменяться хорошими воспоминаниями с вредными привычками у мышей. Эксперимент показал, что пространственная память в мозге хранится отдельно от соответствующего чувства. Узнайте больше о стратегии японских исследователей.

Искусственные кожи, живые произведения искусства и биоаккустика для граждан. В эпоху биотехнологии изменяются границы между естественным и искусственным; непрерывно и последовательно, технические достижения предлагают новые возможности для генетического манипулирования существами и их проектирования в соответствии с человеческими идеями. В этом контексте интересно взглянуть на современные тенденции в современном искусстве в области биотехнологии и то, как художники делают жизненные науки полезными для себя.