Атмосферные опасности. Атмосферное давление. Движение воздуха. Вода в атмосфере

Давление воздуха - сила, с которой воздух давит на земную поверхность. Измеряется в миллиметрах ртутного столба, миллибарах. В среднем она составляет 1,033 г. на 1 см. кв.

Причина, вызывающая образования ветра - разница атмосферного давления. Ветер дует из области более высокого атмосферного давления, в область с более низким. Чем больше разница в атмосферном давлении, тем сильнее ветер. Распределение атмосферного давления на Земле определяет направление ветров, господствующих в тропосфере на разных широтах.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения.
. Вода в жидком или твердом состоянии, выпадающая на земную поверхность, называется атмосферными осадками.

По происхождению выделяют два вида осадков:

выпадающие из облаков (дождь, снег, крупа, град);
образующиеся у поверхности Земли ( , роса, изморозь).
Измеряются осадки слоем воды (в мм.), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм. осадков.

Распределение осадков . Атмосферные осадки распределены по земной поверхности очень неравномерно. Одни территории страдают от избытка влаги, другие от её недостатка. Особенно мало получают осадков территории, расположенные вдоль северного и южного тропиков, где воздуха высоки и потребность в осадках особенно велика.

Главная причина такой неравномерности - размещение поясов атмосферного давления. Так, в области экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги, он поднимается вверх, охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков, и идут обильные дожди. Немало осадков и в других областях земной поверхности, где низкое давление.

В поясах высокого давления преобладают нисходящие воздушные потоки. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему удаляется от точки насыщения, становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов выпадает мало осадков.

По количеству выпадающих осадков ещё нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение - испаряемость. Она зависит от количества солнечного тепла: чем больше его, тем больше влаги может испариться, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в испаряемость (сколько влаги может испариться при данной температуре) 4500 мм/год, а испарение (сколько действительно испаряется) всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажненности территории. Для определения увлажнения пользуются коэффициентом увлажнения. Коэффициент увлажнения – отношение годового количества осадков к испаряемости за один и тот же промежуток времени. Он выражается дробью в процентах. Если коэффициент равен 1 - увлажнение достаточное, если меньше 1, увлажнение недостаточное, а если больше 1, то увлажнение избыточное. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.

Взаимодействие океана и атмосферы.

27. Циркуляция воздушных масс.

© Владимир Каланов,
"Знания-сила".

Перемещение воздушных масс в атмосфере определяется тепловым режимом и изменением давления воздуха. Совокупность основных воздушных течений над планетой называется общей циркуляцией атмосферы . Основные крупномасштабные атмосферные движения, слагающие общую циркуляцию атмосферы: воздушные течения, струйные течения, воздушные потоки в циклонах и антициклонах, пассаты и муссоны.

Движение воздуха относительно земной поверхности – ветер – появляется потому, что атмосферное давление в различных местах воздушной массы неодинаково. Принято считать, что ветер – это горизонтальное движение воздуха. На самом деле воздух движется обычно не параллельно поверхности Земли, а под небольшим углом, т.к. атмосферное давление меняется и в горизонтальном и в вертикальном направлениях. Направление ветра (северный, южный и т.д.) означает, откуда ветер дует. Под силой ветра подразумевается его скорость. Чем она выше, тем ветер сильней. Скорость ветра измеряют на метеорологических станциях на высоте 10 метров над Землёй, в метрах в секунду. На практике силу ветра оценивают в баллах. Каждый балл соответствует двум-трём метрам в секунду. При силе ветра в 9 баллов его уже считают штормовым, а при 12 баллах – ураганом. Распространённый термин «буря» означает любой очень сильный ветер, независимо от количества баллов. Скорость сильного ветра, например, при тропическом урагане, достигает огромных значений – до 115 м/с и более. Ветер возрастает в среднем с высотой. У поверхности Земли его скорость снижается трением. Зимой скорость ветра в целом выше, чем в летнее время. Наибольшие скорости ветра наблюдаются в умеренных и полярных широтах в тропосфере и нижней стратосфере.

Не совсем ясна закономерность изменения скорости ветра над материками на небольших высотах (100–200 м). здесь скорости ветра достигают самых больших значений после полудня, а самых малых – в ночное время. Это наблюдается лучше всего летом.

Очень сильные ветры, до штормовых, бывают днём в пустынях Центральной Азии, а ночью наступает полный штиль. Но уже на высоте 150–200 м наблюдается прямо противоположная картина: максимум скорости ночью и минимум днём. Такая же картина наблюдается и летом, и зимой в умеренных широтах.

Много неприятностей может принести порывистый ветер пилотам самолётов и вертолётов. Струи воздуха, движущиеся в различных направлениях, толчками, порывами, то ослабевая, то усиливаясь, создают большое препятствие для движения воздушных судов – появляется болтанка – опасное нарушение нормального полёта.

Ветры, дующие с горных хребтов выхоложенного материка в направлении тёплого моря, называются борой . Это – сильный, холодный, порывистый ветер, дующий обычно в холодное время года.

Многим известна бора в районе Новороссийска, на Черном море. Здесь созданы такие природные условия, что скорость боры может достигать 40 и даже 60 м/с, а температура воздуха понижается при этом до минус 20°С. Бора возникает чаще всего в период с сентября по март, в среднем 45 дней в году. Иногда последствия её были такими: замерзала гавань, лёд покрывал корабли, строения, набережную, с домов срывались крыши, опрокидывались вагоны, суда сбрасывались на берег. Бора наблюдается и в других районах России – на Байкале, на Новой Земле. Известна бора на Средиземном побережье Франции (там она называется мистраль) и в Мексиканском заливе.

Иногда в атмосфере возникают вертикальные вихри с быстрым спиралеобразным движением воздуха. Эти вихри называются смерчами (в Америке их называют торнадо). Смерчи бывают диаметром в несколько десятков метров, иногда до 100–150 м. измерить скорость воздуха внутри смерча чрезвычайно трудно. По характеру производимых смерчем разрушений оценочными величинами скорости вполне могут быть 50–100 м/с, а в особенно сильных вихрях – до 200–250 м/с с большой вертикальной составляющей скорости. Давление в центре поднимающегося вверх столба смерча падает на несколько десятков миллибар. Миллибары для определения давления обычно используют в синоптической практике (наряду с миллиметрами ртутного столба). Для перевода баров (миллибаров) в мм. ртутного столба существуют специальные таблицы. В системе СИ атмосферное давление измеряется в гектопаскалях. 1гПа=10 2 Па=1мб=10 -3 бар.

Смерчи существуют недолго – от нескольких минут до нескольких часов. Но и за это небольшое время они успевают натворить много бед. При подходе смерча (над сушей смерчи иногда называют тромбами) к зданиям разница между давлением внутри здания и в центре тромба приводит к тому, что здания как бы взрываются изнутри – разрушаются стены, вылетают стекла и рамы, срываются крыши, иногда не обходится и без человеческих жертв. Бывают случаи, когда людей, животных, а также различные предметы смерч поднимает в воздух и переносит на десятки, а то и сотни метров. В своём движении смерчи продвигаются на несколько десятков километров над морем и ещё больше – над сушей. Разрушительная сила смерчей над морем меньше, чем над сушей. В Европе тромбы редки, чаще они возникают в азиатской части России. Но особенно часты и разрушительны торнадо в США. О смерчах и торнадо читайте дополнительно на нашем сайте в разделе .

Атмосферное давление очень изменчиво. Оно зависит от высоты столба воздуха, его плотности и ускорения силы тяжести, которое изменяется в зависимости от географической широты и высоты над уровнем моря. Плотностью воздуха называется масса единицы его объёма. Плотность влажного и сухого воздуха заметно отличается только при высокой температуре и большой влажности. При понижении температуры плотность увеличивается, с высотой плотность воздуха уменьшается медленнее, чем давление. Плотность воздуха обычно непосредственно не измеряют, а вычисляют по уравнениям на основе измеренных величин температуры и давления. Косвенно плотность воздуха измеряют по торможению искусственных спутников Земли, а также из наблюдений за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами.

В Европе плотность воздуха у поверхности Земли равна 1,258 кг/м 3 , на высоте 5 км – 0,735, на высоте 20 км – 0,087, а на высоте 40 км – 0,004 кг/м 3 .

Чем короче столб воздуха, т.е. чем выше место, тем давление меньше. Но уменьшение плотности воздуха с высотой усложняет эту зависимость. Уравнение, выражающее закон изменения давления с высотой в покоящейся атмосфере, называется основным уравнением статики. Из него следует, что с увеличением высоты изменение давления отрицательное, и при подъёме на одну и ту же высоту падение давления тем больше, чем больше плотность воздуха и ускорение силы тяжести. Основная роль здесь принадлежит изменениям плотности воздуха. Из основного уравнения статики можно вычислить значение вертикального градиента давления, показывающего изменение давления при перемещении на единицу высоты, т.е. убывание давления на единицу расстояния по вертикали (мб/100 м). Градиент давления – это и есть сила, приводящая в движение воздух. Кроме силы градиента давления в атмосфере действуют силы инерции (сила Кориолиса и центробежная), а также сила трения. Все воздушные течения рассматриваются относительно Земли, которая вращается вокруг своей оси.

Пространственное распределение атмосферного давления называется барическим полем. Это система поверхностей равного давления, или изобарических поверхностей.

Вертикальный разрез изобарических поверхностей над циклоном (Н) и антициклоном (В).
Поверхности проведены через равные интервалы давления p.

Изобарические поверхности не могут быть параллельны друг другу и земной поверхности, т.к. температура и давление постоянно изменяются в горизонтальном направлении. Поэтому изобарические поверхности имеют разнообразный вид – от прогнутых вниз неглубоких «котловин» до выгнутых вверх растянутых «холмов».

При пересечении горизонтальной плоскостью изобарических поверхностей получаются кривые – изобары, т.е. линии, соединяющие пункты с одинаковыми значениями давления.

Карты изобар, которые строятся по результатам наблюдений в определённый момент времени, называются синоптическими картами. Карты изобар, составленные по средним многолетним данным за месяц, сезон, год, называются климатологическими.



Многолетние средние карты абсолютной топографии изобарической поверхности 500 мб за декабрь - февраль.
Высоты в геопотенциальных декаметрах.

На синоптических картах между изобарами принят интервал, равный 5 гектопаскалям (гПа).

На картах ограниченного района изобары могут обрываться, но на карте всего Земного шара каждая изобара, естественно, замкнута.

Но и на ограниченной карте часто бывают замкнутые изобары, ограничивающие участки низкого или высокого давления. Области с пониженным давлением в центре – это циклоны , а области с относительно повышенным давлением – это антициклоны .

Под циклоном понимают огромный вихрь в нижнем слое атмосферы, имеющий в центре пониженное атмосферное давление и восходящее движение воздушных масс. В циклоне давление возрастает от центра к периферии, а воздух движется против часовой стрелки в Северном полушарии и по часовой стрелке – в Южном полушарии. Восходящее движение воздуха приводит к образованию облачности и к осадкам. Из космоса циклоны выглядят в виде закручивающихся облачных спиралей в умеренных широтах.

Антициклон – это область высокого давления. Он возникает одновременно с развитием циклона и представляет собой вихрь с замкнутыми изобарами и самым высоким давлением в центре. Ветры в антициклоне дуют по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном. В антициклоне всегда существует нисходящее движение воздуха, что препятствует возникновению мощной облачности и продолжительных осадков.

Таким образом, крупномасштабная циркуляция атмосферы в умеренных широтах постоянно сводится к образованию, развитию, движению, а затем к затуханию и исчезновению циклонов и антициклонов. Циклоны, возникающие на фронте, разделяющем тёплую и холодную воздушные массы, движутся в сторону полюсов, т.е. переносят тёплый воздух в полярные широты. Наоборот, антициклоны, возникающие в тылу циклонов в холодной воздушной массе, движутся в субтропические широты, перенося туда холодный воздух.

Над европейской территорией России в год возникают в среднем 75 циклонов. Диаметр циклона достигает 1000 км и более. В Европе за год бывает в среднем 36 антициклонов, часть из которых имеет давление в центре более 1050 гПа. Среднее давление в Северном полушарии на уровне моря равно 1013,7 гПа, а в Южном полушарии – 1011,7 гПа.

В январе в северных частях Атлантики и Тихого океана наблюдаются области низкого давления, названные Исландской и Алеутской депрессиями . Депрессии , или барические минимумы , характеризуются минимальными значениями давления – в среднем около 995 гПа.

В такой же период года над Канадой и Азией возникают области высокого давления, названные Канадским и Сибирским антициклонами. Самое высокое давление (1075–1085 гПа) регистрируется в Якутии и Красноярском крае, а минимальное – в тайфунах над Тихим океаном (880–875 гПа).

Депрессии наблюдаются в районах, где часто возникают циклоны, которые по мере продвижения на восток и северо-восток постепенно заполняются и уступают место антициклонам. Азиатский и Канадский антициклоны возникают благодаря наличию на этих широтах обширных континентов Евразии и Северной Америки. В этих районах зимой антициклоны преобладают над циклонами.

Летом над этими материками схема барического поля и циркуляции коренным образом меняется, и зона образования циклонов в Северном полушарии смещается в более высокие широты.

В умеренных широтах Южного полушария циклоны, возникающие над однородной поверхностью океанов, двигаясь на юго-восток, встречают льды Антарктиды и здесь застаиваются, имея в своих центрах низкое давление воздуха. Зимой и летом Антарктида окружена поясом низкого давления (985–990 гПа).

В субтропических широтах циркуляция атмосферы различна над океанами и в районах соприкосновения материков и океанов. Над Атлантическим и Тихим океанами в субтропиках обоих полушарий имеются области высокого давления: это Азорский и Южноатлантический субтропические антициклоны (или барические минимумы) в Атлантике и Гавайский и Южнотихоокеанский субтропические антициклоны в Тихом океане.

Наибольшее количество солнечного тепла постоянно получает экваториальная область. Поэтому в экваториальных широтах (до 10° северной и южной широты вдоль экватора) в течение круглого года удерживается пониженное атмосферное давление, а в тропических широтах, в полосе 30–40° с. и ю.ш. – повышенное, вследствие чего образуются постоянные потоки воздуха, направленные от тропиков к экватору. Эти воздушные потоки называются пассатами . Пассатные ветры дуют в течение всего года, меняя лишь в незначительных пределах свою интенсивность. Это самые устойчивые ветры на Земном шаре. Сила горизонтального барического градиента направляет потоки воздуха из областей повышенного давления в область пониженного давления в меридиональном направлении, т.е. на юг и на север. Примечание: горизонтальный барический градиент – это разность давлений, приходящаяся на единицу расстояния по нормали к изобаре.

Но меридиональное направление пассатов изменяется под действием двух сил инерции – отклоняющей силы вращения Земли (силы Кориолиса) и центробежной силы, а также под действием силы трения воздуха о земную поверхность. Сила Кориолиса воздействует на каждое тело, движущееся вдоль меридиана. Пусть 1 кг воздуха в Северном полушарии расположен на широте µ и начинает двигаться со скоростью V вдоль меридиана на север. Этот килограмм воздуха, как и любое тело на Земле, имеет линейную скорость вращения U=ωr , где ω – угловая скорость вращения Земли, а r – расстояние до оси вращения. По закону инерции этот килограмм воздуха будет сохранять линейную скорость U , которую он имел на широте µ . Продвигаясь на север, он окажется на более высоких широтах, где радиус вращения меньше и линейная скорость вращения Земли меньше. Таким образом это тело опередит неподвижные тела, расположенные на том же меридиане, но в более высоких широтах.

Для наблюдателя это будет выглядеть как отклонение этого тела вправо под действием какой-то силы. Эта сила и есть сила Кориолиса. По этой же логике килограмм воздуха в Южном полушарии отклонится влево от направления движения. Горизонтальная составляющая силы Кориолиса, действующая на 1 кг воздуха, равна СК=2wVsinY. Она и отклоняет воздух, действуя под прямым углом к вектору скорости V. В Северном полушарии она отклоняет этот вектор вправо, а в Южном полушарии – влево. Из формулы следует, что сила Кориолиса не возникает, если тело покоится, т.е. она действует только тогда, когда воздух движется. В атмосфере Земли величины горизонтального барического градиента и силы Кориолиса имеют один порядок, поэтому иногда они почти уравновешивают друг друга. В таких случаях движение воздуха почти прямолинейно, и он движется не вдоль градиента давления, а вдоль изобары или близко к ней.

Воздушные течения в атмосфере обычно имеют вихревой характер, поэтому в таком движении на каждую единицу массы воздуха действует центробежная сила P=V/R , где V - скорость ветра, а R – радиус кривизны траектории движения. В атмосфере эта сила всегда меньше силы барического градиента и поэтому остаётся, так сказать, силой «местного значения».

Что касается силы трения, возникающей между движущимся воздухом и поверхностью Земли, то она в определённой мере замедляет скорость ветра. Происходит это так: нижние объёмы воздуха, снизившие свою горизонтальную скорость из-за неровностей земной поверхности, переносятся с нижних уровней вверх. Таким образом трение о земную поверхность передаётся вверх, постепенно ослабевая. Замедление скорости ветра заметно в так называемом планетарном пограничном слое , составляющем 1,0 – 1,5 км. выше 1,5 км влияние трения незначительно, поэтому более высокие слои воздуха называют свободной атмосферой .

В экваториальной зоне линейная скорость вращения Земли наибольшая, соответственно здесь и сила Кориолиса наибольшая. Поэтому в тропическом поясе Северного полушария пассаты дуют почти всегда с северо-востока, а в Южном полушарии – с юго-востока.

Низкое давление в экваториальной зоне наблюдается постоянно, зимой и летом. Полоса низкого давления, охватывающая по экватору весь Земной шар, называется экваториальной ложбиной .

Набрав силу над океанами обоих полушарий, два пассатных потока, двигаясь навстречу друг другу, устремляются к центру экваториальной ложбины. На линии низкого давления они сталкиваются, образуя так называемую внутритропическую зону конвергенции (конвергенция означает «сходимость»). В результате этой «сходимости» происходит восходящее движение воздуха и его отток выше пассатов к субтропикам. Этот процесс и создаёт условия для существования зоны конвергенции постоянно, в течение года. Иначе сходящиеся воздушные потоки пассатов быстро заполнили бы ложбину.

Восходящие движения влажного тропического воздуха приводят к образованию мощного слоя кучево-дождевых облаков протяженностью 100–200 км, из которых обрушиваются тропические ливни. Таким образом получается, что внутритропическая зона конвергенции становится местом, где дожди выливаются из пара, собранного пассатами над океанами.

Так упрощенно, схематично выглядит картина циркуляции атмосферы в экваториальной зоне Земли.

Ветры, изменяющие своё направление по сезонам, называют муссонами . Арабское слово «маусин», означающее «время года», дало название этим устойчивым воздушным течениям.

Муссоны, в отличие от струйных течений, возникают в определённых районах Земли, где дважды в год преобладающие ветры движутся в противоположных направлениях, образуя летний и зимний муссоны. Летний муссон – это поток воздуха с океана на материк, зимний – с материка на океан. Известны тропические и внетропические муссоны. В Северо-Восточной Индии и Африке зимние тропические муссоны складываются с пассатами, а летние юго-западные полностью разрушают пассаты. Самые мощные тропические муссоны наблюдаются в северной части Индийского океана и в Южной Азии. Внетропические муссоны зарождаются в возникающих над континентом мощных устойчивых областях повышенного давления в зимнее время и пониженного – в летнее время.

Типичными в этом отношении являются районы русского Дальнего Востока, Китая, Японии. Например, Владивосток, лежащий на широте Сочи из-за действия внетропического муссона зимой холоднее Архангельска, а летом здесь часто бывают туманы, осадки, с моря поступает влажный и прохладный воздух.

Многие тропические страны Южной Азии получают влагу, приносимую в виде проливных дождей летним тропическим муссоном.

Любые ветры являются результатом взаимодействия различных физических факторов, возникающих в атмосфере над определенными географическими районами. К местным ветрам относятся бризы . Они появляются вблизи береговой черты морей и океанов и имеют суточную смену направления: днём они дуют с моря на сушу, а ночью с суши на море. Объясняется это явление разницей температур над морем и сушей в разное время суток. Теплоёмкость суши и моря разная. Днём в тёплую погоду солнечные лучи нагревают сушу быстрее, чем море, и давление над сушей уменьшается. Воздух начинает двигаться в сторону меньшего давления – дует морской бриз . Вечером всё происходит наоборот. Суша и воздух над ней излучают тепло быстрее, чем море, давление становится выше, чем над морем, и воздушные массы устремляются в сторону моря – дует береговой бриз . Бризы особенно отчётливы при тихой солнечной погоде, когда им ничего не мешает, т.е. не накладываются другие потоки воздуха, которые легко заглушают бризы. Скорость бриза редко бывает выше 5 м/с, но в тропиках, где разность температур поверхностей моря и суши значительна, бризы дуют иногда со скоростью 10 м/с. В умеренных широтах бризы проникают в глубь территории на 25–30 км.

Бризы, собственно говоря, те же муссоны, только в меньшем масштабе – они имеют суточный цикл и изменение направления зависит от смены ночи и дня, муссоны же имеют годовой цикл и меняют направление в зависимости от времени года.

Океанские течения, встречая на своём пути берега материков, разделяются на две ветви, направленные вдоль побережий материков к северу и югу. В Атлантическом океане южная ветвь образует Бразильское течение, омывающее берега Южной Америки, а северная ветвь – тёплый Гольфстрим, переходящая в Североатлантическое течение, и под названием Нордкапского течения достигающая Кольского полуострова.

Тихом океане северная ветвь экваториального течения переходит в Куро-Сиво.

Ранее мы уже упоминали о сезонном тёплом течении у берегов Эквадора, Перу и Северного Чили. Оно возникает обычно в декабре (не каждый год) и вызывает резкое снижение улова рыбы у берегов этих стран из-за того, что в тёплой воде очень мало планктона – основного пищевого ресурса для рыбы. Резкое повышение температуры прибрежных вод вызывает развитие кучево-дождевых облаков, из которых проливаются сильные дожди.

Рыбаки иронически назвали это тёплое течение Эль-Ниньо, что означает «рождественский подарок» (от исп. el ninjo – младенец, мальчик). Но мы хотим подчеркнуть не эмоциональное восприятие чилийскими и перуанскими рыбаками этого явления, а его физическую причину. Дело в том, что повышение температуры воды у берегов Южной Америки вызывается не только тёплым течением. Изменения в общую обстановку в системе «океан-атмосфера» на огромных просторах Тихого океана вносит и атмосферный процесс, названный «Южным колебанием ». Этот процесс, взаимодействуя с течениями, определяет все физические явления, происходящие в тропиках. Всё это подтверждает, что циркуляция воздушных масс в атмосфере, особенно над поверхностью Мирового океана, представляет собой сложный, многомерный процесс. Но при всей сложности, подвижности и изменчивости воздушных течений всё же существуют определённые закономерности, в силу которых в тех или иных районах Земли из года в год повторяются основные крупномасштабные, а также местные процессы циркуляции атмосферы.

В заключение главы приведём некоторые примеры использования энергии ветра. Энергию ветра люди используют с незапамятных времён, с тех пор, как они научились ходить в море под парусом. Потом появились ветряные мельницы, а позднее – ветровые двигатели – источники электроэнергии. Ветер – вечный источник энергии, запасы которой неисчислимы. К сожалению, использование ветра в качестве источника электроэнергии представляет большую сложность из-за изменчивости его скорости и направления. Однако с помощью ветряных электродвигателей стало возможным достаточно эффективное использование энергии ветра. Лопасти ветряка заставляют его почти всегда «держать нос» по ветру. Когда ветер имеет достаточную силу, ток идёт непосредственно к потребителям: на освещение, к холодильным установкам, приборам различного назначения и на зарядку аккумуляторов. Когда ветер стихает, аккумуляторы отдают в сеть накопленную электроэнергию.

На научных станциях в Арктике и Антарктике электроэнергия ветровых двигателей даёт свет и тепло, обеспечивает работу радиостанций и других потребителей электроэнергии. Конечно, на каждой научной станции имеются дизель-генераторы, для которых нужно иметь постоянный запас топлива.

Самые первые мореплаватели использовали силу ветра стихийно, без учёта системы ветров и океанских течений. Они просто ничего не знали о существовании такой системы. Знания о ветрах и течениях накапливались столетиями и даже тысячелетиями.

Один из современников китайский мореплаватель Чжэн Хэ в течение 1405-1433 гг. возглавил несколько экспедиций, которые проходили так называемым Великим муссонным путём от устья реки Янцзы к Индии и восточным берегам Африки. Сохранились сведения о масштабах первой из этих экспедиций. Она состояла из 62 кораблей с 27800 участниками. Для плавания экспедиций китайцы использовали свои знания закономерностей муссонных ветров. Из Китая они уходили в море в конце ноября – начале декабря, когда дует северо-восточный зимний муссон. Попутный ветер помогал им достигать Индии и Восточной Африки. Возвращались они в Китай в мае – июне, когда устанавливался летний юго-западный муссон, который в Южно-Китайском море становился южным.

Возьмём пример из более близкого к нам времени. Речь пойдёт о путешествиях знаменитого норвежского учёного Тура Хейердала. С помощью ветра, а точнее, с помощью пассатов Хейердал смог доказать научную ценность двух своих гипотез. Первая гипотеза заключалась в том, что острова Полинезии в Тихом океане могли быть, по мнению Хейердала, заселены когда-то в прошлом выходцами из Южной Америки, которые пересекли значительную часть Тихого океана на своих примитивных плавсредствах. Эти плавсредства представляли собой плоты из бальсового дерева, которое примечательно тем, что после длительного пребывания в воде оно не меняет свою плотность, а потому не тонет.

Жители Перу пользовались такими плотами в течение тысячелетий, ещё до империи инков. Тур Хейердал в 1947 г. связал плот из больших бальсовых брёвен и назвал его «Кон-Тики», что означает Солнце-Тики – божество предков полинезийцев. Взяв «на борт» своего плота пятерых любителей приключений, он отправился в путь под парусом из Кальяо (Перу) в Полинезию. В начале плавания плот несло Перуанское течение и юго-восточный пассат, а затем за работу принялся восточный пассат Тихого океана, который почти три месяца без перерыва дул исправно на запад, и через 101 сутки Кон-Тики благополучно прибыл на один из островов архипелага Туамоту (ныне Французская Полинезия).

Вторая гипотеза Хейердала состояла в том, что он считал вполне возможным, что культура ольмеков, ацтеков, майя и других племён Центральной Америки была перенесена из Древнего Египта. Это было возможным, по мнению учёного, потому, что когда-то в древности люди плавали через Атлантический океан на папирусных лодках. Доказать состоятельность этой гипотезы Хейердалу помогли также пассаты.

Вместе с группой спутников-единомышленников он совершил два плавания на папирусных лодках «Ра-1» и «Ра-2». Первая лодка («Ра-1») развалилась, не дойдя до американского берега нескольких десятков километров. Экипаж подвергся серьёзной опасности, но всё обошлось благополучно. Лодку для второго плавания («Ра-2») вязали «специалисты высшего класса» – индейцы из Центральных Анд. Выйдя из порта Сафи (Марокко), папирусная лодка «Ра-2» через 56 суток пересекла Атлантический океан и достигла острова Барбадос (примерно в 300–350 км от побережья Венесуэлы), преодолев 6100 км пути. Сначала лодку подгонял северо-восточный пассат, а начиная с середины океана – восточный пассат.

Научность второй гипотезы Хейердала была доказана. Но было доказано и другое: несмотря на благополучный исход плавания, лодка, связанная из пучков папируса, камыша, тростника или другого водного растения, для плавания в океане не годится. Подобный «кораблестроительный материал» не должен использоваться, т.к. он быстро намокает и погружается в воду. Ну, а если найдутся ещё любители, одержимые желанием переплыть океан на каких-нибудь экзотических плавсредствах, то пусть они имеют в виду, что плот из бальсового дерева надёжнее, чем папирусная лодка, а также то, что такое путешествие всегда и в любом случае опасно .

© Владимир Каланов,
"Знания-сила"

Если бы характер воздушных течений зависел только от термической неоднородности поверхности земли и воздушных масс, то ветер определялся бы горизонтальным градиентом давления и движение воздуха совершалось бы вдоль этого градиента от высокого давления к низкому. При этом скорость ветра была бы обратно пропорциональна расстоянию между линиями одинакового давления, т. е. изобарами. Чем меньше расстояние между изобарами, тем больше градиент давления, а соответственно и скорость ветра.

Сила градиента давления. В теоретической метеорологии силы обычно относятся к единице массы. Поэтому, чтобы выразить силу градиента давления, действующего на единицу массы, следует величину градиента давления разделить на плотность воздуха. Тогда числовое значение силы барического градиента (Г) определится выражением:

где ρ – плотность воздуха, d ρ/ dn – градиент давления.

Под действием силы градиента давления (барического градиента) возникает ветер. Это значит, что если на некотором участке образуется избыток массы воздуха (высокое давление), то должен произойти отток его в область с недостатком воздуха (низкого давления). Этот отток тем сильнее, чем больше разность давления.



Таким образом, основной движущей силой возникновения движения воздуха является барический градиент. Если бы на воздушные частицы действовала только сила барического градиента, то движение их совершалось бы всегда в направлении этого градиента, подобно стоку воды от более высокого уровня к низкому. В действительности этого не происходит.

При крупномасштабных процессах к термической первопричине возникновения воздушных течений присоединяется действие целого ряда других факторов, которые значительно усложняют атмосферную циркуляцию. Поэтому как муссонная, так и междуширотная циркуляция, обусловленная действиями ряда сил и вихревой природой атмосферной циркуляции, осуществляется несравненно сложнее.

Отклоняющая сила вращения Земли. Изменение направления и скорости воздушных течений в первую очередь вызывается отклоняющей силой вращения Земли, или, как обычно называют ее, силой Кориолиса. Возникновение этой силы связано с вращением Земли вокруг своей оси. Под действием силы Кориолиса ветер дует не вдоль градиента давления, т. е. от высокого давления к низкому, а отклоняясь от него в северном полушарии вправо, в южном полушарии - влево.

На схеме (рис. 29, а) наглядно показано, как отклоняющая сила вращения Земли влияет на изменение направления движения воздуха, начавшегося вдоль градиента давления с постепенно возрастающей скоростью. Влияние других сил здесь не учитывается.

Предположим, что под действием силы барического градиента воздушная частица (обозначена кружком) начнет смещаться в направлении градиента (Г). В первое мгновение, как только появится скорость V 1 возникнет ускорение отклоняющей силы вращения Земли А 1 направленное перпендикулярно и вправо по отношению к скорости V 1 . Под влиянием этого ускорения частица переместится не вдоль градиента, а отклонится вправо; в последующее мгновение скорость движения частицы воздуха станет равной V 2 . Но вместе с этим сила Кориолиса изменится на А 2 . Под влиянием этого поворотного ускорения скорость частицы воздуха еще изменится, став равной V 3 . Не замедлит измениться и сила Кориолиса и т. д. В результате сила давления и отклоняющая сила вращения Земли уравновешиваются и движение воздушной частицы происходит вдоль изобар. Действие силы Кориолиса возрастает с увеличением скорости движения частиц и широты места. Она определяется выражением:

где ω - угловая скорость, φ - географическая широта, V - скорость движения.

Ускорение отклоняющей силы вращения Земли измеряется величинами от нуля на экваторе до 2ω V на полюсе.

Геострофический ветер. Простейшим видом движения является прямолинейное и равномерное движение без трения. В метеорологии оно называется геострофическим ветром. Однако такое движение можно допустить лишь теоретически. При геострофическом ветре предполагается, что, кроме силы градиента (Г), на воздух действует лишь отклоняющая сила вращения Земли (А). Когда движение равномерное, то обе эти силы, действуя в противоположные стороны, уравновешиваются и геострофический ветер направляется вдоль изобар (рис. 29, б). При этом низкое давление находится в северном полушарии слева, а в южном полушарии - справа.

При равновесии сил градиента давления и отклоняющей силы вращения Земли их сумма будет равна нулю. Это выражается следующим соотношением:

откуда получим, что скорость геострофического ветра

Отсюда следует, что скорость геострофического ветра прямо пропорциональна величине горизонтального градиента давления. Следовательно, чем гуще изобары на картах давления, тем сильнее ветер. Хотя в действительных условиях атмосферы чисто геострофический ветер почти не наблюдается, однако наблюдения показывают, что на высоте около 1 км и выше движение воздуха происходит приблизительно вдоль изобар, с небольшими отклонениями, вызванными другими причинами. Поэтому в практической работе вместо фактического ветра пользуются и геострофическим ветром. Кроме силы градиента давления и силы Кориолиса, на движение воздуха действуют сила трения и центробежная сила.

Сила трения. Сила трения направлена всегда в сторону, противоположную движению, и пропорциональна скорости. Она, уменьшая скорость воздушных потоков, отклоняет их влево от изобар, и движение происходит не вдоль изобар, а под некоторым углом к ним, от высокого давления к низкому. Посредством турбулентного перемешивания воздуха влияние трения передается в вышележащие слои, приблизительно до 1 км над поверхностью земли.

Влияние трения на направление и скорость движения воздуха изображено на схеме (рис. 30, а). На схеме представлено поле давления и движение воздуха под действием силы градиента давления, отклоняющей силы вращения Земли и трения. Под действием силы Кориолиса движение воздуха происходит не вдоль градиента давления Г, а под прямым углом к нему, т. е. вдоль изобар. Действительный ветер изображен стрелкой В, сила трения Т отклонена от направления ветра несколько в сторону. Сила Кориолиса показана под прямым углом к действительному ветру стрелкой К. Как видим, угол между действительным ветром В и силой трения Т составляет больше 90°, а угол между действительным ветром В и силой градиента давления Г меньше 90°. Так как сила градиента перпендикулярна изобарам, то действительный ветер оказывается отклоненным влево от изобар. Величина угла, составляемого изобарой и направлением действительного ветра, зависит от степени шероховатости земной поверхности. Отклонение происходит влево от изобар обычно под углом 20-30°. Над сушей трение больше, чем над морем, у поверхности земли влияние трения наибольшее, а с высотой оно уменьшается. На высоте около 1 км действие силы трения почти прекращаете.

Центробежная сила. Если изобары криволинейные, т. е. имеют, например, форму эллипса или окружности, то на движение



воздуха оказывает действие центробежная сила. Это сила инерции, которая направлена от центра к периферии по радиусу кривизны траектории движения воздуха. Под действием центробежной силы (в случае отсутствия трения) движение происходит по изобарам. При наличии же трения ветер дует под углом к изобарам в сторону низкого давления. Величина центробежной силы определяется из равенства

где V - скорость движения воздуха (скорость ветра), r - радиус кривизны его траектории.

Если принять, что движение воздуха происходит по окружности, то скорость его в любой точке траектории будет направлена по касательной к окружности (рис. 30, б и в). Как следует из этой схемы, сила Кориолиса (А) направлена (в северном полушарии) под прямым углом по радиусу вправо от скорости ветра ( V ). Центробежная сила (С) направлена от центра циклона и антициклона к их периферии, а сила градиента (Г) уравновешивает геометрическую сумму первых двух сил и лежит на радиусе окружности. Все три силы в этом случае связаны уравнением

где r - радиус кривизны изобар.

Из этого уравнения следует, что ветер направлен перпендикулярно градиенту давления. Это частный случай ветра при круговых изобарах в системе циклона. Такой ветер называется градиентным.

В северном полушарии в системе циклона (рис. 31, б) сила барического градиента направлена к его центру, а силы центробежная и Кориолиса, уравновешивающие ее, - в противоположную сторону. В случае антициклона (рис. 30, в) сила Кориолиса направлена к центру его, а центробежная сила и сила барического градиента - в противоположном направлении и уравновешивают первую.

Уравнение градиентного ветра в случае антициклона имеет следующий вид:

В южном полушарии, где отклоняющая сила вращения Земли направлена влево от скорости движения воздуха, градиентный ветер отклоняется от градиента давления влево. Поэтому в южном полушарии ветер в циклоне направлен по часовой стрелке а в антициклоне - против часовой стрелки.

Вне действия силы трения, т. е. выше 1 км, ветер по направлению и скорости приближается к градиентному. Разница между действительным и градиентным ветром обычно невелика. Однако эти небольшие отклонения действительного ветра от градиентного играют важную роль в изменении атмосферного давления.

Давление воздуха определяется его массой в столбе атмосферы сечением, равным единице площади. При неравномерном движении воздуха вследствие изменения его термических свойств и действующих сил происходит уменьшение или увеличение массы воздуха в столбе, а соответственно понижение или повышение атмосферного давления.

Главным фактором в изменении поля давления (барического поля) является отклонение действительного ветра от градиентного (на высотах). Когда направление и скорость действительного ветра соответствуют градиентному, происходит увеличение или уменьшение массы воздуха и изменение давления и могут возникать и развиваться атмосферные вихри - циклоны и антициклоны (см. ниже).

Отклонения ветра существенны в областях сходимости воздушных потоков в тропосфере п при большой кривизне потоков движущегося воздуха.



Поле давления. Структура поля давления, или барического поля атмосферы, довольно разнообразна. Во внетропических широтах у поверхности земли и на высотах всегда можно обнаружить большие или относительно малые по размерам циклоны и антициклоны, ложбины, гребни, седловины.

Циклоны - это крупнейшие атмосферные вихри, с низким давлением в центре. Движение воздуха в их системе в северном полушарии происходит против часовой стрелки. Антициклоны - вихри с высоким давлением в центре. Движение воздуха в их системе в северном полушарии происходит по часовой стрелке.

В южном полушарии в обеих системах циркуляция воздуха обратная, т. е. ветры в циклоне дуют по часовой стрелке, а в антициклоне - против часовой стрелки. Гребень - это вытянутая от центральной части антициклона область высокого давления с антициклонической системой циркуляции. Ложбина - это вытянутая от центральной части циклона область низкого давления с циклонической системой циркуляции. Седловина - это форма барического рельефа между двумя циклонами и двумя антициклонами, расположенными крест-накрест.

На рисунке 31 изображено поле давления у поверхности земли с системой ветров. Кроме двух циклонов и двух антициклонов, здесь представлены ложбины, гребни и седловина. Направление ветра показано стрелками, скорость - оперением. Чем больше расстояние между изобарами, тем меньше скорость ветра и меньше оперение. Такое изображение изобар и ветра принято на картах погоды (см. ниже).

Структура поля давления на земном шаре многообразна и сложна. Поэтому режим воздушных течений различен зимой и летом, у поверхности земли и на высотах, над материками и над океанами, не говоря уже о большой его изменчивости в средних и высоких широтах ото дня ко дню. Обычно средние месячные карты давления и ветра отображают лишь преобладающий перенос воздушных масс в течение месяца и скрывают многие интересные особенности атмосферных процессов, которые обнаруживаются на ежедневных картах погоды.

Воздух движется непрерывно: он поднимается (восходящее движение ), опускается (нисходящее движение ) и перемещается в горизонтальном направлении (ветер).

Ветер – перемещение масс воздуха в горизонтальном направлении из областей высокого давления в области низкого. Характеризуется скоростью, силой и направлением .

Скорость ветра измеряется в м/с или в баллах (1 балл - приблизительно 2 м/с). Скорость ветра зависит от разницы давлений.

Направление ветра определяется той стороной горизонта, с которой дует ветер (северный, северо-западный, западный и т.д.). Направление зависит от распределения давления и от отклоняющего действия вращения Земли (ускорения Кориолиса). Воздух стремится перемещаться от большего давления к меньшему по кратчайшему пути, отклоняясь влево в Южном полушарии и вправо - в Северном. При этом на экваторе отклонение отсутствует, а чем ближе к полюсам, тем оно больше.

Ветры у земной поверхности различают по происхождению: местные ветры; ветры циклонов и антициклонов; муссоны; ветры общей циркуляции атмосферы .

Местные ветры : возникают в зависимости от местных условий (рельеф, растительность, водоемы)

    Бризы дуют днем с водоема (море, озеро, большая река) на берег, ночью, наоборот, с берега на водоем. Они могут возникать также на опушке леса, на окраине города. В горах ветер днем дует вверх по склонам и по дну долины, ночью, наоборот, вниз.

    Фён - теплый, сухой и порывистый ветер с гор. Он дует, когда по одну сторону хребта давление ниже, чем по другую.

    Бора - сильный, холодный, порывистый ветер. Образуется в том случае, когда холодный воздух устремляется через невысокие хребты к теплому морю.

Ветры циклонов и антициклонов

0бширная (диаметром в несколько сотен, а то и тысяч километров) область пониженного давления воздуха называется циклоном , область повышенного давления - антициклоном .

Циклоны и антициклоны могут перемещаться над поверхностью Земли и приводят к изменению погоды.

Циклон характеризуется системой ветров, направленных к центру, но под действием ускорения Кориолиса ветры приобретают направление против часовой стрелки в Северном полушарии и по часовой стрелке в Южном. В центральной части циклона наблюдаются интенсивные восходящие потоки воздуха. Воздушные массы поднимаются вверх, остывают, встречаясь с более холодными слоями атмосферы, и выпадают осадки. В центре циклона очень значительная облачность. Циклон способствует наступлению влажной погоды, зимой теплой, летом прохладной.

Циклон образуется следующим образом: при неровной границе атмосферного фронта плотный холодный воздух на каком-то участке оттесняет часть теплого воздуха назад. Повернув вспять и противостоя общему движению теплой воздушной массы, эта часть с повышением атмосферного давления вынуждена отклоняться в сторону и завихряться. При этом возникает эллипсоидное вращение воздуха, уплотненного по периферии, во внутренней части с повышенной температурой. Этот вихрь охватывает всю прифронтовую часть теплой воздушной массы, постепенно втягивая всю ее во вращение. Циклон передвигается со скоростью 30-50 км в час в большинстве случаев с запада на восток, согласно вращению 3емли. Диаметр циклона обычно 1000-2000 км, высота - от 2 до 20 км. Циклон может существовать только до тех пор, пока в слоях атмосферы происходит отток поднявшегося воздуха.

С возникновением циклона резко меняется погода. Усиливается ветер, так как в центре циклона низкое давление и, следовательно, сюда будут дуть ветры. Циклон обязательно связан с выпадением осадков, так как в его центре воздух теплый, а окружающий холодный воздух старается его вытеснить, поэтому и образуются восходящие потоки воздуха.

Циклонов обычно возникает в году до нескольких сотен, и они становятся главным звеном в общей циркуляции атмосферы чаще всего в полярных и умеренных широтах. Вихри, образующиеся вокруг центров пониженного давления, между 5° и 20° широтами в каждом полушарии, называются тропическими циклонами . Они отличаются от циклонов умеренных широт меньшими размерами (диаметр их не превосходит 1000 км) и значительно большей скоростью ветра. Скорость перемещения тропического циклона - 10-12 км/ч. Причина их возникновения еще недостаточно ясна.

Во всей системе тропического циклона воздух поднимается, и только в его центре существует нисходящее движение. Этим объясняется тот факт, что в центре тропического циклона, диаметр которого 18-55 км, тихо и можно видеть чистое небо, тогда как для всей системы типична ненастная погода с ураганными ветрами, сильнейшими ливнями и грозами. Центр тропического циклона называется «глазом бури». Особенно характерны ветры и ливневые осадки для зоны, непосредственно примыкающей к «глазу бури».

Существует несколько очагов наиболее частого за: рождения тропических циклонов: в Атлантическом океане - Карибское море и Мексиканский залив; здесь тропические циклоны называют ураганами . Больше всего тропических циклонов возникает над Тихим океаном; у юго-восточных берегов Азии возникает в среднем 20 циклонов в год. 3десь их называют тайфунами . Третье место по количеству тропических циклонов занимает Индийский океан.

Образовавшиеся тропические циклоны в Северном полушарии движутся сначала на северо-запад, а затем на широте 25-30° поворачивают на северо-восток. Приходя в умеренные широты, тропические циклоны часто затухают.

В центральной части циклона может образоваться сильнейший атмосферный вихрь, который называется смерчем . При вращении воздуха со скоростью 100 м в секунду создается воздушная воронка диаметром не менее 200 метров с разреженным внутри нее воздухом. Центробежные силы отгоняют к периферии воронки тяжелые капли воды и града, которые создают ее «стенки» толщиной 10-20 метров. Утяжеление такой воронки заставляет ее спускаться с высоты 1,5-2 км до земли в виде пустотелого столба. Присасываясь к земле, это образование, несущееся со скоростью курьерского поезда, своей уплотненной дожде-градовой оболочкой сметает все на своем пути.

Смерчи , проносящиеся над сушей, называются тромбами Северной Америке - торнадо ). Они иногда поднимают в воздух дома вместе с жителями, перенося их на некоторое расстояние. По статистике ежегодно от смерча погибает в среднем 400 человек. В нашей стране самый памятный смерч обрушился на Ивановскую и Костромскую области в 1984 году. Он переворачивал подъемные краны, поднимал в воздух автомобили и вагоны, разрушал постройки, ломал деревья. Его диаметр достигал 2 км. Смерч бушует от нескольких секунд до нескольких часов. Предсказать смерч сегодня практически невозможно.

Антициклон - это атмосферный вихрь, в котором все иначе, чем в его антиподе - циклоне. Воздушная спираль раскручивается в Северном полушарии по часовой стрелке, в Южном - против часовой стрелки. В циклоне воздух не поднимается, а опускается, и, как правило, он достаточно сухой. Поэтому погода в этот период всегда ясная, сухая, малооблачная. Температура летом высокая, погода жаркая, зима - морозная. Атмосферные фронты, в отличие от циклонов, никогда не бывают в центре антициклонов. В центре антициклона стоит штиль. В области этого атмосферного вихря, в отличие от циклона, заметны колебания температуры в течение суток. Особенно они велики на материках: в Центральной России день нередко теплее ночи на 10°-15°С, в Сахаре после дневной температуры, равной 40°С, возможны ночные заморозки. Все это можно объяснить отсутствием осадков, оказывающих смягчающее влияние на климат местности.

Антициклоны, в отличие от циклонов, образуются при вторжении холодных воздушных масс в теплые. Так же как и циклоны, антициклоны перемещаются со скоростью 30 км/час с запада на восток, отклоняясь к юго-востоку.

Главные области формирования антициклонов - субтропические и приполярные широты.

Антициклоны способствуют возникновению круговых океанических течений: в Северном полушарии по часовой стрелке, а в Южном полушарии - против часовой стрелки.

Муссоны – переменные ветры, возникающие в системе материк – океан.

На границе материков и океанов ветры зимой дуют с материка на океан, летом, наоборот, с океана на материк. Эти муссонные ветры особенно хорошо выражены в умеренных широтах, где разница в температуре зимы и лета велика.

Ветры общей циркуляции атмосферы – ветры, вызванные общим зональным распределением давления атмосферы.

Распределение атмосферного давления определяет направление ветров, господствующих в нижней тропосфере на разных широтах . От тропических поясов повышенного давления в каждом полушарии воздух направляется с одной стороны к экватору, с другой - к умеренным широтам. При этом он отклоняется под действием ускорения Кориолиса. Между тропиками и экватором дуют пассаты . Это в основном северо-восточные ветры в Северном и юго-восточные в Южном полушарии, переходящие у экватора в восточные.

Воздух, направляющийся от тропических широт в умеренные, отклоняется к востоку. Поэтому в умеренных широтах господствуют западные ветры - западный перенос воздуха.

Из высоких широт в умеренные дуют ветры с преобладанием восточной составляющей Смещение поясов высокого и низкого давления вызывает смещение поясов господствующих на разных широтах ветров. Создаются промежуточные пояса, направление ветров в которых по сезонам меняется. Это хорошо заметно у экватора, когда пояс низкого давления смещается из одного полушария в другое. В этом случае пассаты одного полушария переходят в другое, меняя по сезонам направление на противоположное. Возникают тропические (экваториальные) муссоны.

Атмосферные осадки

Вода в жидком или твердом состоянии, выпадающая из облаков или осаждающаяся непосредственно из воздуха на поверхность Земли, называется атмосферными осадками .

Осадки, выпадающие из облаков, могут быть жидкими (дождь) и твердыми (снег, крупа, град). По характеру выпадения они бывают моросящими, обложными, ливневыми.

Измеряются осадки слоем воды (в мм), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм осадков, из них почти половина - в экваториальных широтах, где они выпадают с удивительной периодичностью: в течение суток - после полудня, в течение года - после равноденствий. В направлении от экваториальных широт к тропическим количество осадков убывает. В умеренных широтах их количество снова увеличивается, в полярных - убывает, и выпадают они там преимущественно в твердом виде.

Над океаном осадков в общем больше, чем над сушей, и зависимость их от широты выражена лучше. Нарушают ее течения: над холодными течениями осадков меньше, чем над теплыми. Много осадков на островах, особенно на наветренных склонах. На характер распределения осадков на суше влияет удаленность от океана и рельеф. Больше всего осадков на наветренных склонах гор. С высотой их количество заметно убывает. Выше снеговой линии твердые осадки не успевают таять и накапливаются в виде снежников и ледников. Твердые осадки, накапливающиеся в полярных широтах, а Зимой и в умеренных, образуют снежный покров. Обладая малой теплопроводностью, снег предохраняет почву от промерзания, а растения от гибели. В нем накапливаются запасы воды, расходуемые летом. Талые воды пополняют грунтовые воды, озера и реки, для которых в этих условиях характерны весенние разливы.

Абсолютный максимум осадков зарегистрирован на острове Гавайи (Тихий океан) - 11684 мм/год и в Черапунджи (Индия) - 26 461 мм/год. Абсолютный минимум - в пустыняхАтакама и Ливийская, где осадки вообще выпадают не каждый год.

Значение атмосферных осадков огромно. Они снабжают пресной водой реки, озера, грунтовые воды. Без них жизнь и деятельность людей невозможны. В связи с загрязнением атмосферы «промывающие» ее осадки тоже загрязняются, становятся кислотными, радиоактивными. Поэтому все острее встает вопрос об охране атмосферы от загрязнения.

По количеству выпадающих осадков еще нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение, то есть испаряемость, которая зависит от количества солнечного тепла: чем тепла больше, тем больше может испариться влаги, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в Сахаре испаряемость достигает 4500 мм/год, а испарение всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажнении территории и определяют нормы орошения. Увлажнение = испаряемость - испарение.

Для определения увлажнения пользуются также коэффициентом увлажнения . Коэффициент увлажнения (К) - отношение суммы осадков к испаряемости вычисленных за один и тот же промежуток времени (сезон, год). Он выражается дробью или в процентах: К>1; К>100% - увлажнение избыточное ; К = 1; К=100% - увлажнение нормально е (лесостепь, степь); К<1, К<100% - увлажнение недостаточное (пустыни).

По степени увлажнения выделяются влажные (гумидные ) и сухие (аридные ) области. Но даже в областях с достаточным увлажнением (степи и лесостепи) бывают длительные периоды с очень малым количеством осадков при высокой температуре - засухи . Катастрофические засухи продолжаются несколько лет подряд (в Африке, в Австралии). Их возникновению способствует деятельность людей, уничтожающих растительный покров.

Погода

Погода - состояние тропосферы в данной местности в данный момент или за какой-то промежуток времени (сутки, неделю, месяц).

Погода характеризуется элементами и явлениями. Элементы погоды - температура воздуха, влажность, давление .

К явлениям погоды относятся ветер, облака, атмосферные осадки . Иногда явления погоды носят необычайный и даже катастрофический характер, например ураганы, сильные грозы, ливни, засухи.

Погода характеризуется не отдельно взятыми элементами явлениями, а их совокупностью . При одинаковой температуре (высокой или низкой), но при разной влажности воздуха, с осадкам или без осадков, с ветром или без него, погода не будет одинаковой. Разным будет и ее воздействие на растения, на человека. Известно, что морозная погода без ветра переносится людьми значительно легче, чем даже менее морозная, но с сильными ветрами. Растения по-разному переносят одинаково жаркую, но влажную или сухую погоду.

Погода изменчива. Главные причины - изменение количеств; солнечного тепла, перемещение воздушных масс, атмосферных фронтов, циклонов и антициклонов. Изменения погоды в течении суток хорошо выражены в экваториальных широтах. Утром солнечные лучи начинают нагревать поверхность, от нее нагревается воздух. Усиливается испарение. Возникает сильная конвекция. В поднимающемся влажном воздухе образуются мощные кучевые облака. После полудня выпадают ливневые осадки. Вечером и ночью ясно и тихо.

В умеренных широтах закономерные изменения погоды в течение суток, зависящие от поступления солнечного тепла, часто нарушаются сменой воздушных масс, прохождением атмосферных вихрей и фронтальными процессами.

Смена циклональной и антициклональной погоды характерна для умеренных широт . В этих широтах хорошо выражены изменения погоды по сезонам. Летом погоды теплые, безморозные, в течение суток даже минимальная температура выше 0°С. Зимой погоды холодные, морозные, максимальная температура ниже 0°С. Для весны и осени характерны погоды с переходом температуры через 0°С. Это значит, что при положительной средней суточной температуре минимальная температура отрицательная, а при отрицательной - положительная. Погода с переходом через 0°С (с оттепелью) бывает и зимой. Безморозные, морозные погоды, погоды с переходом через 0°С могут быть с ветром и без ветра, облачные и безоблачные, с осадками и без осадков.

В полярных широтах весь год преобладают морозные погоды, особенно суровые у Южного полюса.

В экваториальных и тропических широтах морозных погод не бывает, там нет холодного времени года.

Предсказания погоды важны для народного хозяйства и всех областей деятельности людей. Уточнить прогноз погоды для данной территории помогают местные признаки. Срок их действия максимум 24 часа. Необходимо пользоваться не одним, а рядом признаков (изменение температуры, облачности, вид облаков, направление ветра, поведение животных и растений).

Научные предсказания погоды требуют большого количества данных, глубоких знаний и использования самой современной техники. Для того чтобы предсказать погоду, например, для Москвы на срок до трех суток, нужны данные со всего Северного полушария, а на срок 5-7 суток - со всей Земли.

Существует Всемирная служба погоды (ВСП), объединяющая Национальные службы погоды. Она имеет три мировых центра: Москва, Вашингтон и Мельбурн. Данные о состоянии атмосферы собирают и передают 10 000 метеорологических станций, 7000 морских судов, 3000 самолетов, метеоспутники, дрейфующие в океане буйковые станции. Обработка огромного количества данных стала возможной только после появления быстродействующих ЭВМ. Для составления прогнозов вычерчиваются карты погоды (синоптические) на момент наблюдений, моделируются возможные изменения состояния атмосферы (решаются гидродинамические уравнения). Анализ полученных результатов производится при непосредственном участии специалиста-синоптика, без которого составление прогноза пока невозможно. Оправдываемость прогнозов погоды тем больше, чем короче срок предсказания. Предсказания на срок до трех суток оправдываются на 87-89%. Наибольшей точностью отличаются специализированные прогнозы, например авиационные.

Климат

Климат - это многолетний режим погоды, характерный для какой-либо местности. Он проявляется в закономерной смене всех наблюдаемых в этой местности погод. Как и погода, климат зависит от количества солнечной радиации (от широты), от перемещения воздушных масс, атмосферных фронтов, циклонов и антициклонов (от циркуляции атмосферы) и от свойств подстилающей поверхности.

Основные показатели климата: температура воздуха (средняя годовая, января и июля), преобладающее направление ветров, годовое количество и режим осадков. Карты, на которых нанесены показатели климата, называют климатическими, например карта распределения температуры (карта изотерм) или карта распределения осадков (карта изогнет). Существуют также карты климата, на которых выделяются пространства с более или менее одинаковыми показателями климата: климатические пояса, области и т.д. Основных климатических поясов семь: экваториальный, два тропических, два умеренных, два полярных (арктический и антарктический). В основе их выделения - тепловые пояса и пояса господства зональных типов воздушных масс.

Между основными расположены переходные климатические пояса: два субэкваториалъных, два субтропических и два субполярных. Они отличаются сменой воздушных масс: зимой господствует воздушная масса основного пояса, соседнего со стороны полюса, летом - со стороны экватора.

Экваториальный пояс - пояс господства экваториального воздуха. Преобладает его восходящее движение. Температура весь год высокая. Суточные ее колебания больше годовых. Осадков много.

Тропические пояса - пояса формирования тропических воздушных масс. Преобладает нисходящее движение воздуха. Воздух теплый (особенно летом) и сухой (особенно над материками). Господствующие ветры - пассаты.

Умеренные пояса - пояса господства воздушных масс умеренных широт. Преобладают западный перенос, фронтальные процессы, циклоны, антициклоны. Температура летом положительная, зимой - отрицательная. Годовые амплитуды ее колебаний больше суточных. Осадки преимущественно фронтальные, зимой- в твердом виде

Полярные пояса (арктический и антарктический) - пояса формирования холодных и сухих воздушных масс. Для них характерно опускание воздуха в центре областей высокого давления, преобладание отрицательных температур. Осадков мало. Постоянный снежный покров.

Для субэкваториальных поясов характерен летом экваториальный воздух, зимой - тропический. Соответственно погода летом такая же, как в экваториальном поясе, зимой - как в тропическом.

В пределах субтропических поясов летом тропический воздух, зимой - умеренный. Лето жаркое, сухое. Зимой выпадают осадки, связанные с фронтальными процессами. В субполярных поясах (субарктическом и субантарктическом) зимой арктический (антарктический) воздух, летом - умеренный. Лето значительно теплее зимы. Со слабыми, непродолжительными осадками. Зима суровая, сухая.

В одном и том же поясе климат на океане и на материке неодинаков. Соответственно выделяются материковые и морские (океанические) климаты . Они различаются годовыми амплитудами колебания температуры и количеством осадков. Эти различия резко проявляются в тех поясах, где есть суша и хорошо выражены сезоны года: в тропических, субтропических, умеренных Северного полушария, субарктических. В экваториальном, субэкваториальном, умеренном Южного полушария, субантарктическом полярных поясах различия эти слабо выражены. Климат Антарктиды полностью материковый, Арктики, за исключением Гренландии и крупных островов, - океанический. На границе материков и океанов, там, где по сезонам ветры изменяют направление почти на противоположное (зимой с суши, летом с океана), господствует муссонный климат. Его характеризует теплое, дождливое лето и холодная, сухая зима. Особенно хорошо этот климат выражен на востоке Евразии, на границе с Тихим океаном.

На материках на климат влияет рельеф . В горах чем выше, тем холоднее. Даже на экваторе вершины гор покрыты снегом. В поднимающемся по склонам воздухе количество осадков сначала увеличивается, а затем, когда влага выпадает, начинает убывать. Поэтому для гор характерна высотная поясность климата. Однако на любой высоте климат будет зависеть от широты. Даже в поясе вечных снегов высота Солнца и продолжительность дня такие же, как в климатическом поясе у подножия.

Климат не остается неизменным. О том, что он изменяется, свидетельствуют данные систематических инструментальных наблюдений над состоянием атмосферы почти за 200 лет. Сведения о погоде и о климате есть в летописях, в трудах ученых Древнего мира. О климате доисторического прошлого позволяют судить некоторые горные породы (коралловые известняки, каменный уголь, соли, ленточные глины и др.), формы рельефа, остатки организмов, пыльца растений. Причин изменения климата много, они накладываются друг на друга, и поэтому определить их бывает, трудно. Ясно, например, что изменение угла наклона земной оси к орбите вызывает изменение положения границ тепловых, а значит, и климатических поясов. Изменение площадей и расположения материков и океанов влечет за собой значительные изменения климатов на всей Земле. Влияют на климат сильные извержения вулканов, выбрасывающих в атмосферу огромное количество пыли, пепла и водяного пара. Растет антропогенное воздействие на климат. В процессе своей деятельности люди влияют на состояние атмосферы (увеличение содержания СО 2 , запыленность, выбросы тепла и т.д.). Большое влияние на климат оказывает изменение подстилающей поверхности: сведение лесов, создание водохранилищ, орошение и осушение территории, сокращение площадей, покрытых льдом, как на суше, так и в океане.

Общая циркуляция атмосферы - круговоротные движения воздушных масс, простирающиеся по всей планете. Они являются переносчиками различных элементов и энергии по всей атмосфере.

Прерывистое и сезонное размещение тепловой энергии вызывает воздушные течения. Это приводит к разному прогреванию почвы и воздуха на всевозможных территориях.

Именно поэтому солнечное влияние является основоположником движения воздушных масс и циркуляции атмосферы. Воздушные движения на нашей планете бывают абсолютно разные - достигающие нескольких метров или десятков километров.

Самая простая и понятная схема циркуляции атмосферы бала создана еще много лет назад и используется в наши дни. Движение воздушных масс неизменно и безостановочно, они движутся по нашей планете, создавая замкнутый круг. Быстрота передвижения этих масс напрямую связана с солнечной радиацией, взаимодействия с океаном и взаимодействия атмосферы с почвой.

Атмосферные движения вызываются нестабильностью распределения солнечного тепла по всей планете. Чередование противоположных воздушных масс - теплых и холодных, - их постоянное скачкообразное перемещение вверх и вниз, образует различные циркуляционные системы.

Получение тепла атмосферой происходит тремя путями - использованием солнечной радиации, с помощью конденсации пара и теплообмена с земным покровом.

Влажный воздух также важен для насыщения атмосферы теплом. Огромную роль в этом процессе играет тропическая зона Тихого океана.

Воздушные потоки в атмосфере


(Потоки воздуха в атмосфере Земли )

Воздушные массы различаются по своему составу, зависящему от места зарождения. Воздушные потоки подразделяются на 2 основных критерия - континентальные и морские. Континентальные формируются над почвенным покровом, поэтому они мало увлажнены. Морские, наоборот, очень влажные.

Основными воздушными потоками Земли являются пассаты, циклоны и антициклоны.

Пассаты образуются в тропиках. Их движение направлено в сторону экваториальных территорий. Это связано с перепадами давления - на экваторе оно низкое, а в тропиках - высокое.


(Красным на схеме отображены пассаты (trade winds) )

Образование циклонов происходит над поверхностью теплых вод. Воздушные массы передвигаются от центра к краям. Их влияние характеризуется обильными осадками и сильными ветрами.

Тропические циклоны действуют над океанами на приэкваториальных территориях. Они формируются в любое время года, вызывая ураганы и штормы.

Антициклоны образуются над материками, где понижена влажность, но есть достаточное количество солнечной энергии. Воздушные массы в этих потоках движутся от краев к центральной части, в которой они нагреваются и постепенно снижаются. Именно поэтому циклоны приносят ясную и безветренную погоду.

Муссоны являются переменными ветрами, направление которых меняется посезонно.

Также выделяются вторичные воздушные массы, такие как тайфун и торнадо, цунами.